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Abstract

Probability distributions on phylogenetic tree topologies cannot be summarized by a mean
and variance or by a confidence interval (a, b) because they are discrete and unordered. Re-
searchers have therefore devised a number of visual summaries that represent a topology dis-
tribution in terms of a single topology that may contain multifurcations. One commonly used
summary, known as the majority consensus tree, represents the “center” of a topology distribu-
tion by combining bi-partitions of leaf taxa (full splits) that individually have strong support
into a single topology.

However, if a single taxon or clade wanders widely over the topology of the remaining taxa,
the majority consensus tree may collapse to a star tree that contains no information, even if
the topology of most taxa is fairly certain. This can cause substantial problems in interpreting
the results of phylogenetic inference because the addition of new taxa can cause what looks
like a large decrease in phylogenetic resolution. This situation can occur when (i) adding new
taxa that are coded with missing data, (ii) when adding new taxa that lead to the creation of
short branches by subdividing existing branches, and (iii) when the new taxa are connected to
the remainder of taxa via a very long branch, as is the case for many outgroups. We also note
that entire subtrees may wander, as opposed to just individual leaf taxa. In all these cases,
the topology distribution may contain substantial structure although few splits are strongly
supported. Instead, the structure of the topology distribution may be summarized in terms of
supported splits on subsets of leaf taxa (called partial splits). However such structure is invisible
to the majority consensus tree, which considers only splits on all leaf taxa (full splits).

We present a new summary for topology distributions in order to assist researchers by re-
vealing previously hidden structure in Bayesian posterior distributions and bootstrap frequency
distributions. This improved summary can represent wandering clades as subtrees with several
alternative attachment points, and can simultaneously represent the branches over which they
wander, so that it is not necessary to prune the wandering clades from the tree. We term
this new object a multiconnected (MC) tree, and note that it generalizes the traditional mul-
tifurcating (MF) tree. We show that a multiconnected tree naturally corresponds to a set of
possibly partial splits induced by its branches, just as a multifurcating tree corresponds to a
collection of full splits induced by its branches. We describe pairwise compatibility rules for
partial splits that determine whether a set of partial splits forms a multiconnected tree. These
rules ensure that there is at least one bifurcating tree that displays all the (possibly partial)
splits in the collection, and that the collection does not imply any new quartets. This ensures
that the multiconnected tree graph will not incidentally represent any unsupported splits, and
therefore makes it a useful visual representation of supported partial splits. While checking the
compatibility of a collection of splits is in general NP-complete if the splits may be partial, we
note that for multiconnected trees a polynomial-time algorithm is possible. Finally, we describe
an initial algorithm for finding supported partial splits in a collection of topologies.
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1 Introduction

Probability distributions on phylogenetic tree topologies cannot be summarized by a mean and vari-
ance or by a confidence interval (a, b) because they are discrete and unordered. Visual summaries of
topology distributions are therefore essential for a practical understanding of the evidence for and
against phylogenetic hypotheses. Although it is possible to represent a confidence set in topology
space as a list of trees, this representation does not have the compact representation, easy inter-
pretation, and useful structure of an interval (a, b). To overcome this difficulty, researchers have
devised a number of methods to summarize information from topology distributions in terms a single
topology that may contain multifurcations. One commonly used summary, known as the majority
consensus tree, represents the “center” of a topology distribution by combining bi-partitions of leaf
taxa (full splits) that individually have strong support into a single topology. However, if the tree
is subdivided into short branches, or if a clade wanders widely over the topology of the remaining
branches, there may be no full splits that are highly supported. The majority consensus tree may
then collapse to a star tree that contains no information, even when the topology distribution con-
tains substantial structure, such as having many supported quartets. The inability of the majority
consensus to represent branches near uncertain attachment points may lead to incorrect claims that
few topological relationships can be resolved by the data. This difficulty may also discourage re-
searchers from including data about additional taxa in an analysis, because of the misperception
that the expanded data set contains less information than the original, smaller data set.

To remedy this, we extend the majority consensus tree in two ways. First, we extend the
majority consensus tree to include supported splits that partition only some of the leaf taxa. Such
splits are known as partial splits, while splits that partition all the leaf taxa are known as full splits
(Figure 1). Partial splits represent much of the common information between topologies that differ
in the placement of a wandering taxon. Partial splits may achieve high support despite the presence
of wandering clades by partitioning only non-wandering taxa. Second, we introduce a generalization
of multifurcating trees that we call a multiconnected tree graph (Figures 2d, 3a). A multiconnected
tree graph allows branches of the tree to specify a number of alternative attachment points instead
of attaching in only one place as usual. This enables multiconnected trees to graphically represent
uncertainty about attachment points of wandering clades. Such graphs permit our new summary to
reveal hidden structure in topology distributions by graphically representing both wandering clades
and the branches over which they wander (Figure 5). In contrast, alternative methods such as the
majority consensus tree cannot display partial splits; to reveal hidden branches they must prune
wandering clades from the tree so that the partial splits become full splits on the reduced taxon set
(Wilkinson 1994).

Surprisingly, the handling of uncertain attachment points via partial splits and via multicon-
nected tree graphs may be completely unified. We show that multiconnected tree graphs can be
represented in terms of the partial splits that are induced by each branch (Figure 3b), and we show
how to construct multiconnected tree graphs from collections of partial splits. We may therefore
construct a multiconnected tree graph from a set of partial splits that is supported under a prob-
ability distribution on tree topologies. However, not every compatible collection of partial splits
corresponds to a multiconnected tree graph. We therefore provide simple rules to determine which
collections of partial splits are not only compatible, but can also be represented as a multiconnected
tree graph. We describe a method of discarding additional unrepresentable splits to obtain a rep-
resentable split set and obtain a multiconnected tree graph as a summary. We term this summary
for topology distributions the extended majority consensus (EMC).
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Figure 1: Full splits and partial splits. (a) A full split is a bi-partition of all leaf taxa. Each branch
of a tree induces a full split on that tree’s leaf taxa when cut. (b) A partial split is a bi-partition
of only some of the leaf taxa. Note that whether a split is full or partial depends on the set of leaf
taxa being considered, so that it is possible for a split to be a full split with respect to one set of
leaf taxa, but a partial split with respect to a larger set of leaf taxa.

Topology distributions and consensus methods In the Bayesian paradigm (on which we focus
here), the posterior probability distribution on topologies represents the evidence for and against
phylogenetic hypotheses. However, topology distributions may arise from a variety of different
inference methods. When maximum likelihood or maximum parsimony is employed to construct an
estimate of the topology, bootstrap proportions are often employed to assess confidence in topologies
or clades. We note that bootstrap proportions are not to be interpreted as the probability that a
tree is correct; the bootstrap proportion for a clade should not be expected to be identical to its
posterior probability (Huelsenbeck and Rannala 2004). Nonetheless, bootstrap proportions lead to
a probability measure on topologies in the mathematical sense that the probability summed over
all topologies is 1. Finally, consensus trees have been used to summarize common information in
finite sets of trees, such as the set of most parsimonious trees from a maximum parsimony analysis.
Such a set can be considered to represent a probability distribution by assigning equal probability
to each topology in the set.

Systematists have described many different consensus tree methods to summarize common in-
formation in collections of tree topologies (Bryant 2003). Several of these methods, such as the
strict consensus tree, and the maximum agreement subtree (MAST), only represent information
that is common to 100% of input trees. These methods are appropriate for summarizing common
information in a set of topologies, but are not suitable for Bayesian posterior probability distribu-
tions. This is because the posterior probability of a topology or a non-trivial clade will always be
less than 1.0 (unless alternatives are forbidden a priori), and so the summary tree will not contain
any internal branches. Posterior tree samples generated by Markov chain Monte Carlo (MCMC)
may share some information by strict agreement, but this agreement must disappear as the sample
size approaches infinity and stochastic error decreases.

The majority consensus tree and generalizations The majority consensus tree is appropriate
for summarizing Bayesian posterior distributions and bootstrap fractions because it can represent
information that is not shared by all input trees. Like many other methods, the majority consensus
tree exploits the fact that each branch splits the leaf taxa into two groups when cut, and that each
tree can be uniquely decomposed and represented in terms of these bi-partitions, or “splits”. The
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Figure 2: Under the probability distribution that places equal weight on the trees depicted in (a)
and (b), only the position of X is uncertain. However, the 95% majority consensus tree (c) for this
distribution has no internal branches and fails to display all the common information in (a) and
(b). In contrast, the 95% extended majority consensus (d) has an internal branch that induces the
partial split 12|34. Because the taxon X is not involved in the split, it may attach on either side
of the internal branch. To determine the set of bifurcating trees that are compatible with (d), we
first note that it embeds two multifurcating trees (e) and (f). Second, we note that each of the
multifurcating trees (e) and (f) is compatible with 3 bifurcating trees, one of which is consistent
with both (e) and (f). Therefore 5 bifurcating trees are compatible with the multiconnected tree
(d). Therefore, the multiconnected tree (d) represents a set of trees in which the wandering taxon
X may attach first to any of its attachment points (producing a multifurcating tree), and then to
any branch that is adjacent to these attachment points (resolving the multifurcations to produce a
bifurcating tree).
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(a) A multiconnected tree graph.
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Figure 3: A multiconnected tree graph and its informative splits. (a) The multiconnected tree
graph contains two types of edges. Type 1 edges (solid lines) are undirected and correspond to
splits. Type 2 edges (dashed lines with arrows) are directed and point to alternative attachment
points for Type 1 edges. If a subtree can attach to both endpoints of a Type 1 edge, then we say
that this subtree and all its leaf taxa “wander across” the edge. Clades such as {g, h} may wander
jointly; it is not just individual leaf taxa that wander. It is also possible for two different subtrees
to wander across the same branch. (b) Each Type 1 edge corresponds to a split of all taxa that do
not wander across it. Informative splits correspond to internal branches; here we ignore splits that
correspond to leaf branches.
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(a) A multiconnected tree graph with a special node.

Partial Splits
ab|xcd
aby|cd

(b) Informative splits.

Figure 4: A multiconnected tree graph can contain special nodes that are connected to only two
edges. This multiconnected tree graph represents ambiguity in the order of adjacent taxa x and y.
(a) The node to which x and y may both attach is a special node. If x and y are both attached to
this node, then the graph becomes a multifurcating tree that can be further resolved to place either
x or y on the left. Representing such ambiguity is important when there are many short branches
on the tree. If neither x nor y attach to this node, then the node must be removed from the graph.
If this is not done, then two adjacent branches will induce the same split. (b) Informative splits
that correspond to the internal branches of this multiconnected tree graph.
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Figure 5: Wandering taxa obscure branches in the majority consensus. Consider a topology distri-
bution that places equal weight on the topologies in (a) and (b). (c) The majority consensus tree
displays little information. (d) If we remove the taxa g, h, i, and j, then three new internal branches
are revealed. (e) The extended majority consensus can represent these three branches along with
the wandering clades {g, h} and {i, j}. (f) The cloud representation for the same multiconnected
tree graph. (g) The 30% consensus network is able to display incompatible splits in the same graph.
This network displays much of the same information, but does not show the high degree of support
for partial splits.
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majority consensus tree is constructed by first collecting all full splits with posterior probability
greater than one half, and then constructing a multifurcating tree in which each branch corresponds
to exactly one of the collected full splits.

The majority consensus can also be generalized to represent full splits at a desired level l of
support. We follow F.R. McMorris and Neumann (1983) in defining the Ml tree as the unique
multifurcating tree which contains all full splits that are supported with a probability greater than
l. This Ml tree is guaranteed to exist if l is 0.5 or larger (Margush and McMorris 1981). However,
full splits that are supported at a level l < 0.5 may not be compatible with each other, and so there
may be no tree that displays all such full splits. By adjusting l, the researcher may construct a
several different Ml consensus trees that contain full splits with various levels of support. Using
this notation, the M0.5 tree is then the standard majority consensus tree. We abuse the notation
slightly by using M1.0 to refer to the strict consensus tree, even though the full splits in this tree
have support that is only equal to 1.0 instead of being greater than 1.0.

1.1 Problems with the majority consensus tree

One substantial drawback of the majority consensus tree is its sensitivity to taxon sampling. As data
from more taxa are used to compute a Bayesian posterior probability distribution or a bootstrap
frequency distribution, the majority consensus tree for that distribution may become less resolved,
in the sense that it contains fewer internal branches. Conversely, removing certain taxa from an
analysis may lead to a majority consensus tree that contains more internal branches. Unless these
taxa are removed, the majority consensus tree may fail to represent supported splits.

The conventional approach to this drawback is to attempt to increase the number of internal
branches in the majority consensus tree by “pruning” leaf taxa from the tree. Ideally, such prun-
ing would involve removing taxa only from the topology distribution (or from the sampled trees
that represent this distribution); researchers should not remove these leaves and their associated
observations from the data set, in order to avoid discarding any information in the original data set
about topology of the remaining leaves. However, in practice, researchers often censor their data
sets for fear that the resulting majority consensus tree will be less resolved (cite).

There are two main causes for the sensitivity of the majority consensus to taxon sampling. These
causes are described in greater detail below, but we introduce them here. First, sensitivity to taxon
sampling may be caused by a few taxa or clades that may attach at many different places to the
topology of the other taxa. These taxa are known as wandering taxa, rogue taxa, or wildcard taxa.
This problem typically occurs when a taxon or clade contains missing data or is connected to the
remaining taxa by a very long branch, because these conditions reduce the about of information at
the attachment point about the ancestral sequence. Addition of a wandering taxon that attaches on
either side of an originally supported branch apportions the original support for the branch between
these two alternatives. Thus, a highly supported full split on the original taxon set may correspond
to two new full splits on the new taxon set that differ only in the placement of the wandering
taxon; these two new full splits may have a substantially lower probability. Conversely, removing a
wandering clade merges these two alternatives back together, thus leading to a single branch with
increased support.

Second, sensitivity to taxon sampling may be caused by short, adjacent branches in the true
tree. If a clade attaches to the true tree on a short branch, then adding that clade may obscure
the short branch in the majority consensus. This phenomenon does not depend on the amount
of information about the ancestral sequence at the attachment point and so is not influenced by
whether the new clade has missing data or is connected by a long branch. Instead, adding a clade
to the tree subdivides the short branch into two shorter branches. In general, shorter branches
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are more weakly supported by the data since fewer character changes occur on them. Conversely,
removing a clade from the tree merges two subdivided branches into one longer branch which will
be more strongly supported. In this scenario, many branches may be interchanged with their near
neighbors since the branches separating them are short, but they may not be interchanged with more
distant taxa. This scenario differs from the wandering taxon scenario because it is not possible to
designate any specific taxon or clade as the culprit for the lack of resolution in the consensus tree.
Instead, many alternative taxa may be pruned to increase the length of internal branches (Figure
6). Finally, we note that as we progress away from the leaf nodes which contain observed data and
towards the interior of large trees, the attempt to cleanly separate the causes of wandering clades
into these two categories may break down.

1.2 Partial splits and multiconnected trees

An important point of this paper is that in both the short branch scenario and the wandering taxon
scenario, the information that is missing from the majority consensus tree is captured by partial
splits. This partial split information may then be displayed in the extended majority consensus
using multiconnected trees. Because the majority consensus tree only represents supported full
splits, it cannot represent this information without pruning leaf taxa.

The wandering taxon problem When a new clade with taxa X is added to a tree, it may have
a substantial probability of attaching on each side of a branch with full split A1|A2. In such a case,
we say that X wanders over the branch. When X attaches on one side of the branch, the full split
A1∪X|A2 is induced, but when X attaches on the other side of the branch, the full split A1|X ∪A2

is induced instead; when X attaches in the middle of the branch, both splits are induced. Because
each of these two full splits partition an increased number of taxa, their probability must be lower
than the split A1|A2 for a given data set. In fact, the split A1|A2 is induced in all three cases, and
the cases are non-overlapping, so the probability of A1|A2 is equal to the sum of the probabilities
of these three cases. Therefore, in the worst case where X attaches with equal probability on each
side of the branch and rarely attaches on the branch itself, we may have that

Pr(A1 ∪X|A2) = Pr(A1|X ∪A2) = Pr(A1|A2)/2.

When this occurs, neither A1 ∪ X|A2 nor A1|X ∪ A2 will be part of the majority consensus tree,
even if Pr(A1|A2) is as high as 1.0. In such a situation it would be advantageous for a graphical
consensus to represent the split A1|A2, even though this split is a partial split on the enlarged taxon
set.

Figure 5 illustrates this scenario by placing an equal probability of 50% on two different topolo-
gies (Figures 5a,b). The clades {g,h} and {i,j} may attach at widely different points on the topology
of the remaining taxa, leading to a 95% consensus tree with few internal branches (Figure 5c). How-
ever, when these two wandering clades are removed, the 95% consensus reveals substantial structure
in the topology distribution for the remaining taxa (Figure 5d).

Consider the branch with split ab|cdef in figure 5d and the effect of adding the clade {g,h}
to the tree. While the split ab|cdef has probability 100%, this split will become a partial split
after the addition of {g,h}. We will then be forced to consider the two full splits abgh|cdef and
ab|ghcdef. These full splits are identical except for their placement of the {g,h} clade. Each split
has a probability of only 50%, and therefore both splits will be excluded from a 95% consensus
tree. As a result, the addition of the clade {g,h} to the tree will result in the removal of the highly
supported branch ab|cdef because it is a partial split, but will not replace it will either of the full
splits abgh|cdef or ab|ghcdef because their probability is too low.
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Figure 6: The short branch problem. Consider a topology distribution that places equal weight on
the topologies in (a), (b) and (c). In this distribution, each branch has substantial probability of
being interchanged with near neighbors, but lower probability of being exchanged with far neighbors,
as would be the case of the number of mutations on each internal branch was small. More realistic
distributions would not have even and odd taxa moving in lock step, but would require much more
than 3 fundamental trees. (d) No internal branches are supported at the 95% level, so that the 95%
consensus is the star tree. (e) However, pruning taxa 3, 5, and 7 leads to 3 longer branches that
are supported at the 95% level. (f) Likewise, pruning taxa 2, 4, 6, and 8 leads to 2 longer branches
that are supported at the 95% level. (g) The extended majority consensus is able to display all 5
branches without pruning any taxa, because it can represent uncertainty in attachment points.
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However, we note that removing the clades {g,h} and {i,j} from the tree has a cost as well as a
benefit. Pruning these clades reveals three new internal branches (figure 5d) but removes the two
internal branches that group {g,h} and {i,j}. Because multifurcating trees cannot display partial
splits, it is not possible to display all five supported splits in one tree. Instead, one must display both
5c and 5d, with different leaves pruned, in order to include all 5 supported branches. Thus, pruning
clades involves an inherent tension between the goal of revealing the hidden branches over which
the clades wander, and displaying the internal structure of the clades themselves. In constrast, the
use of multiconnected trees instead of multifurcating trees allows the 95% extended consensus to
display all 5 supported branches in one figure, as well as indicating the range over which the rogue
clades wander.

Adjacent short branches When a new clade with taxa X is added to a short branch with
full split A1|A2, it subdivides this branch into two adjacent shorter branches that have full splits
A1∪X|A2 and A1|X∪A2. Because the subdivided branches are shorter, they will each be supported
by a decreased number of character changes. In contrast, the original split A1|A2 corresponds to
both subdivided branches and is supported by a larger number of character changes. Thus, as in the
previous scenario, the majority consensus may be sensitive to taxon sampling, because the addition
of the new clade with taxa X may result in the loss of the original split A1|A2 from the majority
consensus without replacing it with either A1 ∪ X|A2 or A1|X ∪ A2. However, when the branch
with split A1|A2 is short, this sensitivity may occur even when the new clade is not connected by a
long branch and does not have missing data. Therefore, the new clade may not wander widely over
the tree, but may wander a short distance from its true attachment point. If there are many short
branches within this short distance, the new clade may wander over several of them.

When there are many adjacent short branches, we may expect that many clades may interchange
with their near neighbors across these short branches. In such a situation, it does not make sense to
label any of these interchanging clades as being “rogue” clades. This is, first, because the problem is
caused by the shortness of the branches across which they are interchanging, and not because of any
feature in the clades themselves. Second, there is not a unique clade that can be removed to restore
the missing branches. Instead, any of the interchanging clades may be removed, thereby merging
adjacent short branches into a longer branch that may be supported in the majority consensus.

We illustrate this alternative scenario by considering a concrete example in which leaf taxa have
uncertain attachment points, and may be interchanged with their near neighbors. Figure 6 depicts
a simple topology distribution that places equal support of 33.3% on each of three topologies (figure
6). We note that more realistic distributions (as in Figure 13) would not have even and odd taxa
moving in lock step, but we choose not to illustrate such a distribution here because it would require
much more than 3 fundamental trees. The 95% consensus tree contains no internal branches (figure
6d) because each leaf branch may attach on either side of its nearest neighbor. However, pruning
every other leaf branch merges adjacent short branches to form long branches that have high enough
support to be included in the 95% consensus tree; the resulting tree contains either 3 (Figure 6e)
or 2 (Figure 6f) internal branches, depending on which leaves are pruned.

Consider the possiblity of adding leaf taxon 5 to the pruned 95% consensus tree illustrated in
figure 6e. This tree contains the supported split 124|689. However, if the leaf taxon 5 were added,
then the split 124|689 would no longer be a full split, and could not be added to the 95% consensus
tree. Instead, we would be forced to consider the two splits 1245|689 and 124|5689 which each have
a probability of 66%. These splits are equivalent to each other except for the position of taxon 5.
Therefore, the addition of taxon 5 would remove an internal branch from the 95% consensus tree.
Thus, the ability to display the partial split 124|689 would be advantageous.
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The partial split 1234|6789 would be even more advantageous to display, because it partitions
more leaf taxa. This split is displayed in the 95% extended majority consensus tree (figure 6g).
Thus, the extended consensus tree is able to prune taxon 5 (and other leaf taxa) locally instead of
globally.

Other approaches to wandering taxa: pruning- and subtree-based methods Other re-
searchers have also addressed the problem of wandering taxa. Wilkinson (1994) introduced the
Reduced Cladistic Consensus (RCC) in order to display partial splits. Wilkinson referred to partial
splits as “n-taxon statements”, indicating that they partition some number n of the leaf taxa, but
not necessarily all of them. Because the RCC uses multifurcating trees to display splits, partial
splits must be displayed by pruning taxa. Therefore the RCC summarizes topology distributions
in terms of a large collection of multifurcating trees, each of which is a majority consensus tree or
strict consensus tree with different leaves pruned. The goal of this method is to find the smallest
number of different pruned leaf sets (and thus different trees) that must be displayed in order to
represent all partial splits in a set of supported partial splits. This method broke new ground by
making use of of partial splits. However, it can be cumbersome to use because of the large number
of different trees that must be examined, each of which contains mostly the same information.

Cranston and Rannala (2007) recently introduced a method for pruning leaf taxa in order to find
a single bifurcating topology that obtains a high probability. Given a number k of leaf taxa that may
be pruned, this method determines the set of leaf taxa to prune that yields the highest probability
topology. Because of the large number of such sets, the method uses a random walk algorithm similar
to MCMC in order to maximize the probability of the resulting tree. This method is similar to the
MAST consensus, but differs in three ways. First, it does not require strict agreement between all
trees. Second, it yields bifurcating trees instead of multifurcating trees. Third, it yields a different
result for each value of k, whereas the MAST method finds the smallest value of k that yields strict
agreement between input trees. This method is also different than the majority consensus tree and
related methods, because it considers the probability of the splits in a tree jointly rather than singly.

We note that Cranston and Rannala’s idea could be extended to seek multifurcating trees instead
of just bifurcating trees. The use of multifurcating trees would be a substantial improvement,
because in cases of unresolved polytomies deep in the tree they would allow removing as little as
one internal branch, instead of removing a large number of leaf taxa. However, implementing such
a method would require the researcher to explicitly specify how to balance the relative penalties for
removing internal branches and removing leaf taxa.

Other approaches to phylogenetic uncertainty: beyond multifurcating trees Several
new consensus methods have been proposed that move beyond multifurcating trees to summarize
topology distributions. For there are several different methods for using networks to represent
phylogenetic information (Huson and Bryant 2006). However, some of these methods represent
collections of different gene trees that result from hybridization, recombination, or other biological
processes; in this paper we do not consider such networks and focus instead of methods that represent
phylogenetic uncertainty. Holland et al. (2005) discuss using split networks instead of trees to
represent collections of incompatible full splits that are supported in a topology distribution. This
approach allows them to represent full splits with probabilities as low as 0.1 in the same figure,
instead of the usual cutoff of 0.5. Bonnard et al. (2006) suggest using a small number of separate
trees so that incompatible full splits can be represented in different trees. They show how to
heuristically solve a graph-coloring problem in order to find a small number of separate trees that
together represent a collection of supported splits that are not all compatible, although the splits
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in each tree must be compatible. They demonstrate that full splits with probabilities as low as 0.1
can usually be represented in a collection of only 4 trees.

Both of these methods attempt to improve the representation of topology distributions by dis-
playing incompatible full splits with probabilities less than 0.5. This can be quite useful when a
standard majority consensus tree has an internal node with a high degree that allows many possible
topologies if only a small number of topologies occur with any substantial probability. In such a
case, the two methods mentioned above illustrate which conflicting alternatives actually occur by
displaying the incompatible alternative splits with probability between 0.1 and 0.5. Thus both of
these methods may add valuable information to the majority consensus tree.

However, these methods do not specifically address the problem of wandering taxa. Neither of
the two graphical representations mentioned above directly displays uncertainty about attachment
locations. More fundamentally, the ability to represent incompatible splits does not rescue these
methods from their inherent sensitivity to taxon sampling that they obtain from considering only full
splits1. Approaches that focus on partial splits are based on combining together various full splits
that individually have low support into one partial split that has high support; the ability to display
incompatible splits is an important improvement but is not a substitute for displaying partial splits.
When clades have uncertain attachment points, consensus methods that display a small number of
highly supported partial splits may produce graphs that are more easily interpretable than graphs
that represent on a large number of full splits that may have low support (see figures 5f and 5g).
Nevertheless, these two approaches are complementary rather than being alternatives, and are most
appropriate to different types of uncertainty. Therefore, an ideal method would combine both
approaches.

2 Representing topological uncertainty with multiconnected trees

In this paper, we introduce multiconnected tree graphs as a method for representing wandering taxa
in phylogeny distributions (Figure 3). We now provide an informal definition of multiconnected
graphs and multiconnected trees, followed by a description of how multiconnected trees represent
topological uncertainty. A more mathematically rigorous definition then follows.

2.1 Multifurcating trees represent a collection of full splits

Leaf labelled multifurcating trees present a collection of full splits corresponding to their leaf taxa L.
The majority consensus tree summarizes a probability distribution on bifurcating trees in terms of a
single multifurcating tree; many other consensus methods also rely on multifurcating trees in order
to summarize uncertainty. We therefore summarize how multifurcations can be used to represent
uncertainty. The extended majority consensus tree goes beyond the majority consensus tree by
moving beyond the concept of multifurcating trees. However, the extended majority consensus also
shares a number of characteristics with the majority consensus, such as representing trees as a
collection of splits.

2.1.1 Bifurcating trees and multifurcating trees

Evolutionary trees are leaf-labelled bifurcating trees. We assume that evolutionary tree topologies
are unrooted. No generality is lost by using unrooted trees because a root can be considered a

1Therefore pruning wandering taxa from consensus networks may substantially decrease the complexity of such
a network, revealing a previously hidden tree structure. [Make figure of 25S RNA example: Campylobacter has
phylogenetic uncertainty: using a consensus network does not really show the underlying tree structure.]
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special leaf taxon in the unrooted framework. This allows us to consider a wandering root using
the same framework we develop for wandering taxa.

The number of branches attached to a node is referred to as the degree of the node. Leaf
nodes have degree 1 by definition. Internal nodes of degree d represent the division of a parent
population into d − 1 sub-populations. Because internal nodes of degree 2 do not partition the
parent population into multiple sub-populations, they are superfluous. Internal nodes of degree 2
can be removed from unrooted topologies, and we only consider topologies on which they do not
occur. A node of degree higher than 3 is called a polytomy. Topologies without polytomies are called
bifurcating topologies because each internal node represents the bifurcation of a parent population
into two sub-populations. Topologies with polytomies are termed multifurcating topologies.

We require that evolutionary tree topologies be bifurcating topologies and we note that a bifur-
cating tree with n leaf nodes always has n − 2 internal nodes, n leaf branches, and n − 3 internal
branches. In contrast, a multifurcating topology has fewer internal nodes and internal branches.

2.1.2 Multifurcating trees represent phylogenetic uncertainty

In order to consider phylogenetic uncertainty, we must consider sets of trees that contain more than
one tree. We say that a tree τ extends a tree µ if it is possible to change τ into µ by removing
edges and merging their endpoints. We define 〈µ〉 as the set of all bifurcating trees that extend
µ. In this context, a polytomy in µ indicates uncertainty because there are a number of different
bifurcating trees that extend it (See Figure 7). This kind of polytomy is thus called a soft polytomy
to contrast it with the division of an ancestral population into multiple descendant populations (a
hard polytomy). We will henceforth assume that all polytomies are soft.

The multifurcating tree that contains no internal branches is called the star tree. If µ is the star
tree, then 〈µ〉 is the entire space of bifurcating trees with n leaves and represents the absence of any
information about the tree posterior.

Multifurcating trees are by nature well suited to represent certain kinds of uncertainties. How-
ever, uncertainty from wandering taxa or from short branches is not well represented by multifur-
cating trees. Therefore, instead of seeking an improved method of constructing multifurcating trees,
we seek to extend the idea of the multifurcating trees to represent partial splits.

2.1.3 Internal branches and splits

The majority consensus tree makes use of the fact that multifurcating trees and bifurcating trees
can be equivalently represented either as a graph or as a set of full splits that are induced by cutting
each branch of the graph.

Removing a branch from a bifurcating or multifurcating tree divides the leaf taxa L into two
non-empty subsets and so each branch of the tree is associated with a bi-partition A = {A1, A2} of
leaf taxa. In the context of phylogenetics, such a bi-partition is called a split, and is written A1|A2.
We therefore define a split on leaf taxa L as a pair of non-empty sets A1 and A2 that are disjoint
(A1 ∩ A2 = ∅). If the split contains all the leaf taxa (L = A1 ∪ A2) then we call it a full split;
otherwise we call it a partial split. If the split may or may not be a full split, then we just refer to
it as a split.

If one half of a split contains only one taxon, then the split will be present in all trees. We
therefore term such splits “uninformative” since they cannot be used to distinguish between different
trees. If both halves of a split contain two or more leaf taxa, then the split can only be induced by an
internal branch of the tree. Such splits are true of only some trees, and we term them “informative”
splits.
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Because each branch of a topology corresponds to a full split, we may therefore describe a tree
µ in terms of the set S(µ) of full splits that it implies. Thus, each multifurcating tree µ corresponds
to both a set of full splits S(µ) and a set of bifurcating trees 〈µ〉 that extend µ:

S(µ) ← µ→ 〈µ〉 .

In order to define the relationship between the full splits S(µ) and the set 〈µ〉, we associate each
full split π with the set 〈π〉 of all bifurcating trees displaying π. For a set Σ of splits, we define 〈Σ〉
as

〈Σ〉 ≡
⋂
π∈C
〈π〉 . (1)

If 〈Σ〉 is empty, then this means that no bifurcating tree can display all the splits in Σ; in this case
we say that Σ is not compatible. We note that bifurcating trees that display all splits of µ also
extend µ:

〈S(µ)〉 = 〈µ〉 . (2)

If τ is a bifurcating tree, then it is the only tree that displays all of its bi-partitions, just as it is the
only tree that extends itself:

〈S(τ)〉 = 〈τ〉 = {τ}. (3)

As a result, we can decompose statements about a bifurcating tree τ into statements about its splits
S(τ). We also note that any compatible set Σ of full splits corresponds to a multifurcating tree that
displays these splits and no others, and we term this tree M(Σ), so that µ = M(S(µ)).

Finally, note that we might consider Σ to represent either the tree M(Σ) or the set 〈Σ〉, but we
do not in fact have to make such a choice. This is because M(Σ) represents not only Σ but also
〈Σ〉, since M(Σ) is the only tree that is extended by every tree in 〈Σ〉.

〈M(Σ)〉 = 〈Σ〉 .

2.1.4 Interpreting the majority consensus tree

For future convenience, we define Πl as the set containing all splits with probability greater than l.
Therefore, if l ≥ 0.5 then

Ml = M(Πl).

We note that Ml trees do not represent a level l credible (fixme: Bayesian) interval. While
partitions in Πl have probability greater than l when considered singly, their joint probabilities may
be less than l. Since the Ml tree is the intersection of several such events its probability may be
much smaller than l. We also note that when the the Ml tree is fully resolved (e.g. not bifurcating)
it may not be the most probable tree.

Instead of representing a credible (fixme: Bayesian) interval, the M0.5 tree can be better
understood as representing the center of a tree distribution. This is becauseM0.5 tree is the median
tree, in the sense that it minimizes the expected Robinson-Foulds (RF) distance to a random tree
τ (?). Additionally, we note that a random tree can be expected to agree with at least a fraction l
of the internal branches of an Ml tree. This tree therefore minimizes a loss function and can be an
optimal estimate in terms of Bayesian decision theory (Holder et al. 2008).
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Figure 7: Extension. Adding more branches to a tree also increases the number of splits that the
tree implies. The trees with the new branches contain no splits that are incompatible with the
original tree, and are said to extend it, so that τ1 / τ2 / τ3. Polytomies are “soft” polytomies because
they represent uncertainty about which of the alternative extensions is true, instead of representing
speciation into three or more species.

2.2 Multiconnected Tree Sets

2.2.1 Informal Definition

Multiconnected trees represent a collection of splits. Just as in normal trees, each branch induces a
split when cut. However, when a branch in a multiconnected tree is cut, it splits only leaf taxa that
are on the same side of the branch in all embedded trees. Leaf taxa that may attach on alternate
sides of the branch in different embedded trees are excluded from the split and are not partitioned
by it. This produces a partial split. For example, in Figure 2d, the taxon X may attach on either
side of the central branch (labelled in green), and occurs on different sides of this branch in the two
embedded trees in Figures 2e and 2f. Therefore the split induced by the central branch in 2d is the
partial split 12|34 which does not include the leaf taxon X.

Leaf taxa may wander individually, or may wander jointly in subtrees, as the clade {g, h} in
Figure 3 does. It is also possible for two different subtrees to wander across the same branch.

2.2.2 Precise Definition

Multiconnected graphs We first define a multiconnected graph as follows. A multiconnected
graph G = (V,E,Q) consists of a set V of vertices, a multiset E of edges, and a set Q of equations.
Each equation q = (v, S) in Q consists of a vertex v and set S of vertices in V to which the vertex
v may attach. Any multiconnected graph that may be obtained by equating v with some s ∈ S and
removing q from Q is said to be embedded in G. We also consider any graph (V,E) to be identical
to the multiconnected tree graph (V,E, ∅).

We graphically depict an equation (v, S) in one of two ways. First, we may draw a dashed line
from v to each endpoint w ∈ S with an arrowhead pointing to w (Figure 5e). Second, we may draw
cloud containing all and only the vertices S, and draw an arrowhead from v to the cloud (Figure
5f). Both types of figure represent the same underlying equation.

We associate each directed edge (u, v) in a multiconnected graph G a directed split Au,v,G. We
define Bu,v,G as the set of leaf labels that are connected to vertex u but not vertex v when the edge
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(u, v) is cut. We may then define the directed split Au,v,G ≡ Bv,u,G|Bu,v,G. It is clear that when the
graph G is a leaf-labelled tree with labels L, the splits Âu,v,G are in fact the full splits that would
be obtained by cutting the branch (u, v).

Multiconnected trees We define a multiconnected tree as a multiconnected graph in which
every embedded graph is a tree. Recall that a tree is defined as a graph with a single connected
component that contains no cycles. In this paper we focus on the set of splits associating with a
multiconnected tree, because we seek to use multiconnected trees to represent a set of supported
splits, possibly including partial splits. We do not, however, characterize here the requirements for
a multiconnected graph to be a multiconnected tree. Instead, we show that multiconnected graphs
can be generated from certain collections of splits and that such multiconnected graphs are indeed
multiconnected trees.

Proving the correspondence between split sets and their graphs Before we can present
multiconnected trees and their graphs as useful tools for summarizing phylogenetic uncertainty, we
must show that such graphs actually represent a collection of trees, and that split sets that satisfy
the criteria for a multiconnected tree can be represented by such a graph. Both of these problems
are comparatively trival for tree graphs and sets of full splits, making the majority consensus tree
a useful summary of phylogenetic uncertainty. However,

3 Unrepresentable split collections

While any combination of full splits that is pairwise compatible may be displayed in a tree, only a
certain partial split collections may be displayed in this way.

4 Multiconnected Split Sets

4.1 Representations of a multiconnected split sets

The majority consensus tree can be represented in three equivalent ways. It can be represented as
a collection Σ of splits that are pairwise compatible, or as a collection 〈Σ〉 of trees that display all
splits in Σ, or as a graph M(Σ) that every tree in 〈Σ〉 extends (See figure 8). Also, each edge of the
graph M(Σ) corresponds to a split contained in Σ.

Likewise, an extended majority consensus tree be represented in three analogous ways. It can
be represented as a collection of partial splits Σ that satisfy extended compatibility rules, or as
a collection of trees 〈Σ〉 that display all splits in Σ, or as a graph G(Σ) that every tree in 〈Σ〉
extends/refines. The graph G(Σ) has two types of edges; type 1 edges (thick lines) correspond to
splits or partial splits. Type 2 edges (dashed lines) connect an endpoint of a type 1 edge to its
possible attachment points (See figure 9). The graph G(Σ) also embeds all bifurcating trees in 〈Σ〉,
and therefore represents common information in 〈Σ〉, instead of representing Σ directly. Therefore,
in order for G(Σ) to represent Σ, 〈Σ〉 must also represent Σ, and there must not be any other set
Σ′ such that 〈Σ〉 = 〈Σ′〉.

4.2 Definition of a multiconnected split sets

We define a multiconnected tree as set of partial splits Σ that are pairwise compatible and satisfy
additional constraints. These constraints prevent the partial splits in Σ from interacting to jointly

16



Graph M(Σ) ↔ split set Σ ↔ set of (bifurcating) trees 〈Σ〉
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Figure 8: Three representations of multifurcating trees all contain the same information. The
first representation is a graph. The second representation is a set of compatible splits. The third
representation is the set of fully resolved trees that contain all splits in the split set. They also
extend the graph.

Graph G(Σ) ↔ partial split set Σ ↔ set of (bifurcating) trees 〈Σ〉
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Figure 9: Multiconnected trees can also be represented in three ways that contain the same infor-
mation. The graph now has multiple attachment points. The split set now contains partial splits.
The set of fully resolved trees is still a set of fully resolved trees. (Emphasize “...” ? as “3(?)
more”)
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imply any new quartets that are not part of splits in Σ. These constraints reduce to the requirement
of standard pairwise compatibility if all splits in Σ are in fact full splits. To describe these con-
straints, we begin by introducing the concept of ordered splits and by defining three new relations
between ordered splits.

4.2.1 Pairwise Compatibility

For any two (possibly partial) splits A = A1|A2 and B = B1|B2 we define #(A,B) as the number
of sets Ai ∩ Bj that are non-empty. This number can range from 0 to 4. If #(A,B) = 4 then
〈{A,B}〉 = ∅ and {A,B} is incompatible; otherwise A and B are compatible. If A and B are
distinct full splits that are compatible, then #(A,B) will always be 3. However, if A and B are
different partial splits, then #(A,B) may be smaller than 3.

4.2.2 Ordered splits

If undirected2 branches on a tree correspond to the splits that they induce, it is natural to seek
a correspondence between directed branches and splits. We do this by introducing the concept of
ordered splits. When a split A is an ordered split, then we distinguish between A1|A2 and A2|A1.
We say that A1|A2 points towards the part of the tree containing the leaf nodes A2. In order to
refer to a split that is the same as a split A but points in the opposite direction, we will use the
notation At = A2|A1. (small figure? Jeff: Yes)

4.2.3 The “implies” relation

We say that A =⇒ B iff (B1 ⊆ A1 and B2 ⊆ A2) or (B1 ⊆ A2 and B2 ⊆ A1). For example:
123|456 implies 12|56.

4.2.4 The “left of” relation

We define the relation A < B on any two ordered splits A and B to mean A1 ⊂ B1 and B2 ⊂ A2

(see Figure 10). The “<” relation is sensitive to order of both A and B; however, we note that
A < B is true if and only if Bt < At, so that these two expressions are equivalent. If A < B then
we say that A is “to the left of” B. The geometric interpretation of the < relation is that A and
B are both pointing in the same direction, and that A points to B but B does not point to A. As
a example of the “<” relation, consider the splits 12|5Y34 < 12X5|34. These splits satisfy the <
relation because 12 ⊂ 12X5 and 34 ⊂ 5Y 34 (See figure 10).

We also note some algebraic properties of the < relation. First, we cannot have A < A because
the subsets are strict. Second, if A < B, then it is not the case that B < A because this would
require that A1 and B1 are strict subsets of each other. Third, it is transitive: A < B and B < C
together imply that A < C. These three properties mean that “<” is a strict partial order on splits.

We note that if A < B then #(A,B) must be at least 2 because of the two subset relationships.
Further, A1∩B2 must be empty, because A1∩A2 must be empty, and B2 ⊂ A2. Therefore, #(A,B)
cannot be 4, and A and B must be compatible. We distinguish two cases. If A2 ∩ B1 is empty,
then #(A,B) equals 2, and we may write A <2 B. This cannot occur for full splits3. If A2 ∩ B1

is not empty, then #(A,B) equals 3, and we may write A <3 B. We note that the <2 relation
imposes a weaker ordering than the <3 relation. Specifically, if two full splits α and β imply A and
B respectively, then A <3 B implies that α < β. However, A <2 B implies either α < β or β < α.

2Jeff: defined?
3Why? Show.
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Figure 10: Relation: Left of. The multiconnected tree graph here illustrates 12|5Y 34 < 12X5|34
as an example of the ” < ” relation. This relation satisfies the definition of ” < ” because 12 ⊂
12X5 and 34 ⊂ 5Y 34. (i) The partial split 12|5Y 34 is illustrated by the two red-shaded ellipses
containing 12 and 5Y 34 respectively. The split XY |1234 also corresponds to the red branch of
the multiconnected tree graph. (ii) The partial split 12X5|34 is illustrated by the two blue-shaded
ellipses containing 12X5 and 34 respectively. The split 12X5|34 also corresponds to the blue branch
of the multiconnected tree graph.

We additionally define A � B in Σ if (i) A < B and (ii) there is no C ∈ Σ such that A < C
and C < B and (iii) A and Bt do not directly wander4 over any other split in Σ.

4.2.5 The “wanders over” relation

We define the relation A ↓ B on any two ordered splits A and B such that A ↓ B if and only
if B1 ∪ B2 ⊆ A2 (See Figure 11). In this case we say that A wanders over B. This relation is
sensitive to the ordering of A, but not to the ordering of B. This is because the two endpoints of a
branch may wander over different other branches, so that A and At need not wander over the same
splits. This relation allows a single taxon to wander over a branch, in which case A represents a leaf
branch, as in the example X|12345Y ↓ 12|345. However, clades may also wander, as in the case:
XY |12345 ↓ 12|345. We also write A 6↓ B to indicate that A does not wander over B.

We also note a few important algebraic relationships with geometric interpretations. First, we
cannot have that A ↓ A, because A1 and A2 must be disjoint and so A1 cannot be a subset of A2.
Second, if A ↓ B then it cannot be the case that B ↓ A. Therefore two branches cannot wander
over each other. Third, if A ↓ B and B ↓ C, then A ↓ C; the wandering relationship is therefore
transitive. These three properties mean that ↓ is a strict partial order on splits. Fourth, if A ↓ B,
then it cannot be the case that At ↓ B; the two different ends of a branch cannot wander over the
same branch. Finally, if A < B and B ↓ C, then A ↓ C; if B wanders over C then any branches
that are in the subtree behind5 B also wander over A.

This last point indicates that a split A that wanders over a split C may in fact be separated
from C by other splits B in the collection Σ of splits. We therefore define a new relation A ⇓ C to
indicate that A ↓ C and there is no split B ∈ Σ such that A < B and B ↓ C. In this case we say that
A wanders directly over C in Σ. This fact is important in the construction of the multiconnected
tree graph G(Σ) from the split set Σ.

4Wandering (and direct wandering) not defined yet. Move definition of � and ⇓ to a section on relations that are
relevant to graph construction?

5Jeff: what does this mean? Perhaps just mention that this relationship will become important when we begin to
construct the graph.
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Figure 11: Relation: Wandering. The multiconnected tree graph here illustrates XY |1234 ↓ 12|34
as an example of the “↓” relation. (i) The full split XY |1234 is illustrated by the two red-shaded
ellipses containing XY and 1234 respectively. The split XY |1234 also corresponds to the red branch
of the multiconnected tree graph. The red branch has two alternate attachment points, indicated by
dotted lines, which is why it is called a wandering branch. (ii) The partial split 12|34 is illustrated
by the two blue-shaded ellipses containing 12 and 34 respectively. The partial split 12|34 also
corresponds to the blue branch of the multiconnected tree. Because 12|34 does not contain X or
Y , the clade XY may attach at either side of the blue branch. (iii) We also note that the directed
split X|1234Y wanders over the split 12|34. However, it does not wander directly over 12|34 in this
illustration because XY|1234 is in between in the sense that X|1234Y<XY|1234 and XY|1234 ↓
12|34. (Jeff wonders if you can’t just write XY↓12|34 instead of XY|1234↓12|34. Well,
this is supposed to be a compatibility relation that corresponds to the graph..., and
this change would remove the compatibility nature...)
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Figure 12: Relation: Disjoint. We write A ⊥ B when the leaf sets of A and B do not overlap, but
there is a third branch C such that C1|C2 ↓ A and C2|C1 ↓ B. In this example A =12|34, B=56|78,
and C=1234|5678.

4.3 The relation “disjoint”: “⊥”

We define the relation A ⊥ B on any two splits A and B such that A ⊥ B if and only if (A1∪A2)∩
(B1 ∪B2) = ∅. (See figure 12).

4.4 Rules

A multiconnected tree on leaf set L is a collection of unordered splits Σ such that

• Σ contains the leaf branches x|L − x for every x ∈ L.

• If A ∈ Σ then A1 ∪A2 ⊆ L.

• If A,B ∈ Σ then A and B must relate through “<”, “↓”, or “⊥”.

Rule 1: Related through “<” Any two ordered splits A and B may be related through “<”, in
which case one of the following must be true:

1. A < B (same as Bt < At)

2. B < A (same as At < Bt)

3. At < B (same as Bt < A)

4. B < At (same as A < Bt)

Rule 2: Related through “↓” Any two ordered splits A and B may be related through “↓”, in
which case one of the following must be true:

1. A ↓ B

2. At ↓ B

3. B ↓ A

4. Bt ↓ A
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Rule 3: Related through “⊥” Any two ordered splits A and B may be related through “⊥”.
Because the relation “⊥” is not sensitive to the ordering of A and B it is not necessary to consider
cases for this relation.

Additional facts Firstly, we claim that each of these nine cases is exclusive.
Finally, we note that if all splits in Σ are full splits (that is, when Σ represents a multifurcating

tree) then all pairs of splits satisfy Rule 1.

4.4.1 The meaning of the rules

The rules above lead to a simple geometric interpretation.

1. The first rule prohibits the insertion of branches that represent partial splits missing taxa
X1, X2, . . . in a region of the tree that is separated from X1, X2, . . .. Equivalently, the branches
over which a taxon x wanders must not be separated from each other, or from the attachment
point of x by any branches over which x does not wander6.

2. The second rule ensures that each wandering branch can independently be attached to any
node of the multiconnected tree graph, without restricting the attachment points of other
wandering branches. ???

3. The third rule ensures allow both ends of a branch to wander, and ensures that the tree is
connected in this case.

4.5 Examples and counter-examples

Example 1. 12|34 and 12|56
This example is prohibited. Each branch wanders over the other, and therefore their wandering

is not independent. The constraint that wandering branches must relate through Rule 2 prohibits
this kind of pair, but gains the property that wandering branches can decide where to attach without
affecting the attachment points of other wandering branches.

Example 2. A=12X|3456 and B=1234|56
This example is prohibited. When considering the multiconnected tree with just split A as an

internal split, we find that unplugging X resulting in the addition of a new branch splitting a node
that is different that the node from which X was removed. As a result, this combination is note
closed, but jointly implies the full split 1234X|56. Thus, an attempt to display these splits in a
graph, actually results in displaying a different collection of splits: A=12X|3456 and B’=1234X|56.

5 Proofs

We claim that if Σ is a collection of partial splits that obeys the rules, then:

1. Σ is compatible. That is, 〈Σ〉 is not empty.

2. 〈Σ〉 is fully closed. That is q 〈Σ〉 =
⋃
σ∈Σ q(σ) = q(Σ).

6Well, given that we have 3 overlaps for the splits A and B, this rule prevents a taxon x that is not in B from
being separated from B by A, which would
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3. It is always possible to construct a graph (the multiconnected tree graph) that represents
exactly the splits in Σ.

These properties are both necessary for the multiconnected tree graph to exist. If the first property
is not satisfied, then no tree exists that is compatible with Σ, and so the graph cannot exist.

We note that the graph represents Σ by embedding a set of trees that have exactly the splits
Σ in common. The second property is required for such a set of trees to exist; if it is not satisfied,
then any set of trees that is compatible with Σ will also be compatible with other splits not in Σ,
and so there will be no set of of trees that represents the splits Σ.

5.1 Proof that a multiconnected tree is compatible

This proof proceeds by noting that one can take a pair of branches A ↓ B and extend B to
B′ = B1|A1 +B2 (Theorem 111). A no longer wanders over this new split B, but instead A < B′t.
Now, the new collection Σ′ that is obtained by replacing B by B′ is also a multiconnected tree
(Theorem 100). Clearly 〈Σ′〉 ⊂ 〈Σ〉 so if we can show that Σ′ is compatible, then Σ is compatible as
well. This procedure also increases the support B1∪B2 of one of the partial splits, and so successive
applications of this procedure eventually yield a multiconnected tree composed only of full splits.
Such a tree must be a multifurcating tree, and therefore is compatible. Therefore the original

5.2 Proof that a multiconnected tree is fully closed

Consider any quartet x that is not implied by any of the individual splits σ ∈ Σ. If we can always
resolve Σ to a multifurcating tree that does not imply x, then x 6∈ q 〈Σ〉 and Σ does not jointly
imply any quartets that are not part of its splits.

We can do this by considering each branch σ ∈ Σ and showing that σ can be extended to form
σ′ that does not imply x. However this proof is messy and requires a lot of cases. Surely there is
an easier way?

6 The multiconnected tree graph

6.1 How to construct the graph G(Σ) from Σ

6.1.1 The graph with ranges

The multiconnected tree graph G(Σ) can be constructed from any multiconnected split set Σ as
follows.

1. For each ordered split A in Σ̌, add a new vertex V (A) to G(Σ) that is associated with A. Now
if Σ contains some positive number |Σ| of splits, then G(Σ) contains 2|Σ| vertices.

2. For each split A in Σ create an (undirected) edge that connects the vertices V (A) with V (At).
This edge corresponds to the (undirected) split A, and its two endpoints correspond to different
orientations of A.

3. For each split A ∈ Σ, we label the vertex V (A) a non-wandering vertex if there is no B ∈ Σ
such that A ⇓ B.

4. For each pair of non-wandering vertices V (A) and V (B), if A < Bt and there is no split C such
that A < C < Bt, we identify V (A) with V (B). (Note that elsewhere we call this situation
“A� B in Σ”) (See Lemma 83 for the transitivity of this identification criterion.)
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5. For each wandering vertex V (A) we construct an equation (v, S) where v = V (A). We add to
S the vertex v(B) for any edge B such that A ⇓ B. Every vertex in S indicates an alternative
attachment point for V (A). When attempting to graphically depict an equation, we may draw
a dashed line from v to every node s ∈ S, or we may draw a colored cloud encircling the points
S and connect v to the perimeter of the cloud.

If Σ contains only full splits, then there are only non-wandering vertices. In such a case, G(Σ) will
create a tree, where each edge is associated with the split that it induces.

6.1.2 The graph with multi-edges

In order to construct the graph G(Σ) from Σ we first define the nodes of graph G(Σ)

Definition 3. For any set of ordered splits Σ we define the set NW (Σ) ≡ {A ∈ Σ : A 6⇓
B for all B ∈ Σ̌} of ordered splits that do not wander in Σ.

Definition 4. We define the relation N(Σ) as {(A,B) ∈ Σ̌2 : A = B∨A� Bt}. Note that A� Bt

requires that A,B ∈ NW (Σ̂). The fact that (A,B) ∈ N(Σ) will indicate that the ordered splits A
and B point to the same node in G(Σ), the multiconnected graph of Σ.

Lemma 5. If Σ is a multiconnected split set, then the relation N(Σ) forms an equivalence relation.

Proof. First, the relation clearly satisfies A ∼ A.
Second, suppose that A ∼ B. If A = B then clearly B ∼ A. Alternatively, if A 6= B, then

A� Bt, and so A < Bt. Also, there is no C ∈ Σ such that A < C < Bt. Transposing everything,
this then implies that B < At and there is no C ∈ Σ̌ such that B < Ct < At. This then implies
that B � At, and thus B ∼ A.

Finally, suppose that A ∼ B and B ∼ C.

• If either A = B or B = C, then either A ∼ B or B ∼ C implies A ∼ C.

• If A 6= B and B 6= C, then A � Bt and B � Ct. But then B � At and B � Ct, and so
A� Ct by Lemma 83.

Therefore A ∼ B and B ∼ C together imply A ∼ C.

Definition 6. We define the node pointed to by the split A ∈ NW (Σ̌) as the equivalence class of
A under N(Σ):

ν(A,Σ) =
{
B ∈ Σ̌ : (A,B) ∈ N(Σ)

}
.

Definition 7. If Σ is a multiconnected split set, then we define V (Σ) as the set of equivalence
classes of N(Σ). Thus,

V (Σ) ≡
⋃

A∈NW (Σ̌)

ν(A).

The set V (Σ) will be the vertices of the graph G(Σ).

Definition 8. If Σ is a multiconnected split set and A ∈ Σ̌ then we define the set T (A,Σ) of targets
of A as

T (A,Σ) =

{
{ν(A)} if A ∈ NW (Σ̌)⋃
B∈NW (Σ̌):A⇓B ν(B) if A 6∈ NW (Σ̌)
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Lemma 9. |T (A,Σ)| > 1 if and only if A 6∈ NW (Σ̌).

Proof. |T (A,Σ)| > 1 contradicts A ∈ NW (Σ̌), since A ∈ NW (Σ̌) requires T (A,Σ) = {ν(A)} and
thus requires |T (A,Σ)| = 1. Therefore, |T (A,Σ)| > 1 implies A 6∈ NW (Σ̌).

Now, if A 6∈ NW (Σ̌), then the set of splits {C ∈ Σ̌ : A ⇓ C} cannot be empty. Let us consider
the order A < B ≡ A ↓ B ∨ At ↓ B. This is a partial order because A 6< A, A < B and B < C
implies A < C, and A < B implies B 6< A. There must be a maximal element D in {C ∈ Σ̌ : A ⇓ C}
under this order. But then D and Dt are both in NW (Σ). Therefore ν(D,Σ) and ν(Dt,Σ) are
both in T (A,Σ). Since these must be distinct vertices, and both must be in T (A,Σ), we have that
|T (A,Σ)| > 1.

Definition 10. If Σ is a multiconnected split set and A ∈ Σ̌ then the directed edge associated with
A is e(A, Σ̌) ≡ (T (At,Σ), T (A,Σ)). If A ∈ Σ then e(A,Σ) is the undirected version of this.

Definition 11. If Σ is a multiconnected split set, then we define the multiset E(Σ) as

E(Σ) =
⋃
A∈Σ

e(A).

Lemma. The multiset E(Σ) contains each edge only once. That is, if A and B are distinct members
of Σ̌, then e(A) 6= e(B).

Proof. Suppose e(A) = e(B). Then T (A,Σ) = T (B,Σ) and T (At,Σ) = T (Bt,Σ). Note that by
Lemma 9, T (·,Σ) can be equal for two distinct splits if and only if they are both wandering, or both
non-wandering.

If A and At are in NW (Σ), then this requires ν(A,Σ) = ν(B,Σ), and ν(At,Σ) = ν(Bt,Σ).
But then A < Bt and At < B. These cannot both be true, so we cannot have e(A) = e(B) if
{A,At} ⊆ NW (Σ).

If At ∈ NW (Σ) and A 6∈ NW (Σ), then we have At � B and there exists some element C such
that A ⇓ C and B ⇓ C. But then At < B ↓ C and so At ↓ C. But then C ∈ A1 and C ∈ A2, which
is a contradiction. Therefore we cannot have e(A) = e(B) if At ∈ NW (Σ) and A 6∈ NW (Σ).

If A ∈ NW (Σ) and At 6∈ NW (Σ) then, we cannot have e(At) = e(Bt) by the previous case.
If At, A 6∈ NW (Σ) then we must have some C,D ∈ Σ such that A ⇓ C and B ⇓ C and At ⇓ D

and Bt ⇓ D. But by Lemma 78, we must have either A < B or B < A. If A < B then A < B ↓ C,
which contradicts A ⇓ C. If B < A, then B < A ↓ C, which contradicts B ⇓ C. Thus, we cannot
have e(A) = e(B) if At, A 6∈ NW (Σ).

Therefore, for A and At either wandering or non-wandering, e(A) 6= e(B). Therefore, if A 6= B
then e(A) 6= e(B).

Definition 12. If Σ is a multiconnected split set, then we define the multiconnected graph G(Σ)
associate with Σ as

G(Σ) ≡ (V (Σ), E(Σ)).

6.2 Facts about nodes

Lemma 13. If Σ is a multiconnected split set and n ∈ V (Σ), then there exists some A ∈ NW (Σ̌)
such that n = ν(A,Σ).

Proof. By the definition of V (Σ), every element n is ν(A,Σ) for some A ∈ NW (Σ̌).
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Lemma 14. If Σ is a multi-connected split set and n ∈ V (Σ), then n is not empty.

Proof. For any n ∈ V (Σ), there is some A ∈ NW (Σ̌) such that n = ν(A,Σ). But then A ∈ n, and
n is not empty.

Definition 15. Let the set S(A,Σ) ≡
{
B ∈ Σ̌ : A < B or A ↓ B

}
. That is, S(A,Σ) ≡

{
B ∈ Σ̌ : A <o B

}
(See 82 for a definition of <o). Since A 6∈ S(A,Σ), we note that S(A,Σ) = S(A,Σ∩ {A}C). There-
fore, if A 6∈ Σ, then S(A,Σ +A) = S(A,Σ).

Lemma 16. If A does not directly wander in Σ then for any M ∈ min<o S(A,Σ), A < M .

Proof. Suppose that A ↓M . But since A does not directly wander in Σ, there must be some element
B of Σ̌ such that A < B ↓ M . But then B ∈ S and B <o M , contradicting the fact that M is a
minimal element of S(A,Σ). Therefore, A 6↓M and so A < M .

Lemma 17. If Σ is a multiconnected split set and A does not directly wander in Σ and B ∈ S(A,Σ)
but B 6∈ min<o S(A,Σ), then there is some M ∈ min<o S(A,Σ) such that A < M <o B.

Proof. By the definition of minimal elements, if B 6∈ min<o S(A,Σ), then there is some M ∈
min<o S(A,Σ) such that M <o B. By Lemma 16, we must have A < M .

Theorem 18. If Σ is a multiconnected split set and A ∈ NW (Σ̌) and M t ∈ min<oS(A,Σ) and
M ∈ NW (Σ), then M ∈ ν(A,Σ).

Proof. If M t ∈ min<o S(A,Σ) then A < M t by Lemma 16. There cannot be any element B ∈ Σ̌
such that A < B < M t because M t is a <o-minimal element of S(A,Σ). If M ∈ NW (Σ) then
A�M t by the definition of �. Therefore M ∈ ν(A,Σ).

Claim 19. If B ∈ S(A,Σ) then either B ∈ minS(A,Σ) or there is some M1 ∈ minS such that
M1 <o B.

Lemma 20. IfM1,M2 ∈ minS(A,Σ) andM1 6= M2 then eitherM t
1 < M2 orM t

1 ↓M2 orM t
2 ↓M1.

Proof. Since A < M1 and A < M2 by Lemma 16, then by Lemma 80 we must have either

• M1 < M2

• M2 < M1

• M t
1 < M2

• M t
1 ↓M2

• M t
2 ↓M1

Now M1 < M2 and M2 < M1 cannot occur since M1 and M2 are minimal elements of S(A,Σ)
according to <o. The remaining cases are exactly those claimed.

Theorem 21. If M ∈ min<o S(A,Σ) and M t 6∈ NW (Σ̌) then there exists some C ∈ S(A,Σ) such
that M t ⇓ C.

Proof. Suppose that M t ⇓ C. Now since M t < At, then by Lemma 76 either

• C < At

26



• Ct < At

• At ↓ C
In this case we have M t < At ↓ C, which contradicts M t ⇓ C.

• A ↓ C

• A ⊥ C and there is some D such that Dt ↓ A and D ↓ C and M t < D.

In this case we have M t < D ↓ C, which contradicts M t ⇓ C.

Therefore, any such C has either A < Ct or A < C or A ↓ C. Thus, either C or Ct is in S. Since
M ⇓ C and M ⇓ Ct, the theorem is proved.

Theorem 22. IfM1 ∈ min<o S(A,Σ) andM t
1 6∈ NW (Σ̌) then there exists someM2 ∈ min<o S(A,Σ)

such that M t
1 ⇓M2.

Proof. By Theorem 21 there is some element B ∈ S(A,Σ) such that M t
1 ⇓ B. Then there must be

some M2 ∈ minS such that either M2 = B or M2 <o B.

Case 1. Now, suppose that M2 < B. Then by Lemma 75 either M t
1 ⇓M2 or M2 < M1. The latter

cannot occur since M1 and M2 are both in min<o S(A,Σ), so in this case M t
1 ⇓M2.

Case 2. Suppose that M2 ↓ B. Then by Lemma 77 we must have one of

• M t
1 ↓M2

• M2 ↓M t
1

Disallowed by Lemma 20.

• M t
1 < M2

This implies M t
1 < M2 ↓ B, which would contradict M t

1 ⇓ B.

• M2 < M t
1

Disallowed by Lemma 20.

• M2 < M1

Disallowed by Lemma 20.

Thus in this case, we must have M t
1 ↓ M2. Now suppose that there is some split Z ∈ Σ̌ such

that M t
1 < Z ↓M2. then M t

1 < Z ↓ B since M2 ↓ B. But this contradicts M t
1 ⇓ B. Therefore there

is no such split Z and M t
1 ⇓M2.

Case 1. Finally, we suppose that M2 = B.

In each case, we see that M t
1 ⇓M2.

Theorem 23. If Σ is a multiconnected split set and A ∈ NW (Σ̌), then ν(A,Σ) = {A}∪max↓ (min<o S(A,Σ))t.

Proof. For any element N ∈ max↓ (min<o S(A,Σ))t, N does not wander over any element of
(min<o S(A,Σ))t because N is maximal. Therefore, by Lemma 22, N does not directly wander
in Σ. Since N t ∈ min<o S(A,Σ) and N ∈ NW (Σ), Lemma 18 implies N ∈ ν(A,Σ). Therefore,

{A} ∪max
↓

(
min
<o

S(A,Σ)

)t
⊆ ν(A,Σ).
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Now, any element ofB ∈ ν(A,Σ) is either equal toA, or hasA� Bt. In either caseB ∈ NW (Σ̌).
Clearly if B = A, then B ∈ {A} ∪max↓ (min<o S(A,Σ))t.

Now suppose B 6= A and so A � Bt. Then Bt ∈ S(A,Σ) because A < Bt. Suppose Bt 6∈
min<o S(A,Σ). Then there must be some M ∈ min<o S(A,Σ) such that A < M < Bt or A < M ↓
Bt. A < M < Bt cannot occur because A � Bt. A < M ↓ Bt cannot occur because this would
imply A ↓ Bt. Therefore, B ∈ (min<o S(A,Σ))t.

Now suppose that B 6∈ max↓ (min<o S(A,Σ))t. Then B ↓ C for some C ∈ (min<o S(A,Σ))t.
Furthermore, since B ∈ NW (Σ̌), there must be some D ∈ Σ̌ such that B < D ↓ C. Since A < C,
Lemma 74 implies that either A < Dt or D ↓ A. Now, if A < Dt then A < Dt < Bt, which
contradicts A � Bt. Alternatively, if D ↓ A, then B < D ↓ A and B ↓ A, which contradicts
A � Bt. Therefore, we must have B ∈ max↓ (min<o S(A,Σ))t for any B ∈ ν(A,Σ) for which
A 6= B. Therefore,

ν(A,Σ) ⊆ {A} ∪max
↓

(
min
<o

S(A,Σ)

)t
.

6.3 Proof that removing A is a contraction on G(Σ + A)

Definition 24. For a multiconnected split set Σ and an ordered split A ∈ Σ̌, let L(A,Σ) ≡
max↓ (min<o S(A,Σ))t. If A 6∈ Σ but A ∈ NW (Σ +A) then L(A,Σ) ⊆ NW (Σ +A) since L(A,Σ +
A) ⊂ ν(A,Σ + A) by Theorem 23. Since L(A,Σ + A) does not contain A we note that L(A,Σ) =
L(A,Σ + A). Since elements in NW (Σ + A) minus A and At are also in NW (Σ), we also have
L(A,Σ) ⊆ NW (Σ) by Lemma 27.

Lemma 25. If Σ is a multiconnected split set andA is informative, then S(A,Σ) is not empty.

Proof. Let x be a member of A2 and let C = L − x|x. Now, C ∈ Σ̌ since Σ must contain all leaf
splits of the leaf set L. We have A1 ⊂ C1 because A1 ⊂ C1 ∪ C2 and A1 ∩ C2 = A1 ∩ {x} = ∅.
Clearly C2 ⊂ A2. Therefore A < C, and so C ∈ S(A,Σ).

Lemma 26. If Σ is a multiconnected split set and A ∈ NW (Σ̌) and then |ν(A,Σ)| = 1 and L(A,Σ)
is empty if |A2| = 1, whereas |ν(A,Σ)| > 1 and L(A,Σ) is non-empty if |A2| > 1.

Proof. If |A2| = 1, then let us assume that there exists a B ∈ ν(A,Σ) such that B 6= A. Since
A 6= B, we must have that A � Bt in Σ. However, A < Bt would require B1 ⊂ A2, which would
require |B1| = 0. This cannot happen, because then B would not be a split. Therefore, if |A2| = 1,
then there are no other members of ν(A,Σ), besides A and |ν(A,Σ)| = 1. Since ν(A,Σ) contains
L(A,Σ) but L(A,Σ) does not contain A, then L(A,Σ) must be empty.

If |A2| > 1, then S(A,Σ) is not empty by Lemma 25, the set L(A,Σ) = max↓ (min<o S(A,Σ))t

cannot be empty either. Therefore it contains some elementD, and thus by Theorem 23D ∈ ν(A,Σ)
and D 6= A. Therefore |ν(A,Σ)| is at least 2.

Lemma 27. If Σ and Σ + A are multiconnected split sets and
{
A,At

}
⊆ NW (Σ + A) and B ∈

NW (Σ + A) ∩ Σ̌ then B ∈ NW (Σ). That is, NW (Σ + A) ∩ Σ̌ ⊆ NW (Σ), or NW (Σ + A) ⊆
NW (Σ) +

{
A,At

}
. Furthermore, NW (Σ +A) ∩ {A,At}C = NW (Σ +A) ∩NW (Σ).

Proof. Let us assume by way of contradiction that there exists some ordered split C ∈ Σ̌ such that
B ⇓ C in Σ. We note that B 6⇓ C in Σ + A since B ∈ NW (Σ + A). Therefore, we can only have
B ⇓ C in Σ if B < A ↓ C or B < At ↓ C, since A and At are the only elements in ˇΣ +A that
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are not in Σ̌, and none of the elements in Σ̌ can be between B and C in this way. But then there
can be no element D ∈ Σ + A such that B < A < D ↓ C or B < At < D ↓ C, since this would
contradict B ⇓ C in Σ. Therefore either A ⇓ C or At ⇓ C in Σ + A. But this contradicts our
assumptions, and therefore there can be no C such that B ⇓ C ∈ Σ. Therefore B ∈ NW (Σ), and
NW (Σ +A) ∩ Σ̌ ⊆ NW (Σ).

Since NW (Σ +A) ∩ Σ̌ = NW (Σ +A) ∩
{
A,At

}C , we have

NW (Σ +A) ∩
{
A,At

}C
= NW (Σ +A) ∩

{
A,At

}C ∩NW (Σ)

= NW (Σ +A) ∩NW (Σ).

Definition 28. We define the set of informative splits in a split set Σ as I(Σ) ≡ {σ ∈ Σ : σ is informative}.

Lemma. If Σ and Σ+A are multiconnected split sets and
{
A,At

}
⊆ NW (Σ+A) and B ∈ NW (Σ)

then either B ∈ NW (Σ +A) or B ⇓ A.

Proof. Consider some B ∈ NW (Σ). Let us assume that B 6∈ NW (Σ +A). Then there exists some
C ∈ ˇΣ +A such that B ⇓ C in Σ + A. But B 6⇓ C in Σ since B ∈ NW (Σ). Now, suppose that
C 6∈ Σ̌, then C is A or At and B ⇓ A in Σ +A. Alternatively, if C ∈ Σ̌, then B ↓ C. There cannot
be any D ∈ Σ̌ such that B < D ↓ C, because then D ∈ ˇΣ +A and so if there were such a D then
B 6⇓ C in Σ +A. But then B ⇓ C in Σ, which contradicts B ∈ NW (Σ). Therefore, only the C 6∈ Σ̌
case is allowed, and so our assumption B 6∈ NW (Σ +A) implies B ⇓ A.

Lemma 29. If (B,C) ∈ N(Σ +A) ∩ Σ̂ then (B,C) ∈ N(Σ).

Proof. According to Lemma 27, {B,C} ⊆ NW (Σ̌) since {B,C} ⊆ NW ( ˇΣ +A) ∩ Σ̂. If there
is no D ∈ ˇΣ +A such that B < D < Ct then there isn’t going to be one in Σ̌. Therefore
(B,C) ∈ N(Σ).

Lemma 30. If Σ and Σ + Ǎ are multiconnected trees and
{
A,At

}
⊆ NW (Σ +A) and B ∈ Σ̌ and

(A,B) ∈ N(Σ +A) then (A,B) ∈ N(Σ)

Proof. A and C are in NW (Σ̌) since they are in NW (Σ +A) by Lemma 27. Now since there is no
D ∈ ˇΣ +A such that A < D < Bt then there is also no such D in Σ̌. Then A � Bt in Σ and so
(A,B) ∈ N(Σ).

Definition 31. Let J1(A,Σ) be L(A,Σ) ∪ L(At,Σ). Thus J1(A,Σ) = J1(A,Σ + A). We note
that also J1(A,Σ) =

[
ν(A,Σ +A) ∪ ν(At,Σ +A)

]
∩ Σ̌. We also note that J1(A,Σ) ⊆ NW (Σ) and

J1(A,Σ) ⊆ NW (Σ +A).

Definition 32. Let K(A,Σ) be NW (Σ +A) ∩
{
ν(A,Σ) ∪ ν(At,Σ)

}C . Since ν(A,Σ) ∪ ν(At,Σ) ⊆
NW (Σ +A) we have the following as a partion of NW (Σ +A):

NW (Σ +A) = ν(A,Σ) ∪ ν(At,Σ) ∪
[
NW (Σ +A) ∩

(
ν(A,Σ) ∪ ν(At,Σ)

)C]
= ν(A,Σ) ∪ ν(At,Σ) ∪K(A,Σ).

Now since any split B with A ∈ ν(B,Σ + A) also has B ∈ ν(A,Σ + A), note that K(A,Σ) is the
set of splits B in NW (Σ +A) such that ν(B,Σ +A) does not contain A or At. Also note that

K(A,Σ) = NW (Σ +A) ∩
{
J1(A,Σ) ∪A ∪At

}C
= NW (Σ +A) ∩ J1(A,Σ)C ∩

{
A ∪At

}C
.
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By Lemma 27 we have NW (Σ +A) ∩
{
A ∪At

}C
= NW (Σ +A) ∩NW (Σ), so that

K(A,Σ) = NW (Σ) ∩NW (Σ +A) ∩ JC1 (A,Σ).

Lemma 33. If Σ and Σ + A are multiconnected split sets and
{
A,At

}
⊆ NW (Σ + A), then for

any split B ∈ K(A,Σ) we have that ν(B,Σ +A) = ν(B,Σ).

Proof. For anyB ∈ K(A,Σ), Theorem 23 implies that ν(B,Σ+A) = {B}∪max↓ (min<o S(B,Σ +A))t.
Assume by way of contradiction that there is some B ∈ K(A,Σ) such that min<o S(B,Σ +A) con-
tains A or At. Then Lemma 18 implies that A ∈ ν(B,Σ + A) or At ∈ ν(B,Σ + A) because A and
At are both in NW (Σ + A). This then implies that B ∈ ν(A,Σ + A) ∪ ν(At,Σ + A) because the
sets ν(·,Σ + A) are equivalence classes. But this contradicts the premise that B ∈ K(A,Σ), since
K(A,Σ) has no overlap with ν(A,Σ + A) ∪ ν(At,Σ + A). Therefore, min<o S(B,Σ + A) does not
contain A or At.

Since S(B,Σ +A) does not contain A or At for any B ∈ K(A,Σ), then for any such B we have

min
<o

S(B,Σ +A) = min
<o

S(B,Σ),

since removing any element from a set cannot make a minimal element stop being minimal. There-
fore

max
↓

(
min
<o

S(B,Σ +A)

)t
= max

↓

(
min
<o

S(B,Σ)

)t
and so ν(B,Σ +A) = ν(B,Σ).

Lemma 34. If Σ and Σ +B are multiconnected trees and
{
B,Bt

}
⊆ NW (Σ +B) and A,B,C ∈ Σ̌

and A� B � C in Σ +B, then A� C in Σ.

Proof. A and Ct are in NW (Σ̌) since they are in NW (Σ +B) by Lemma 27.
Suppose A 6� C in Σ. Then there exists some D ∈ Σ̌ such that A < D < C. Now, if A < B < C

and A < D < C then either B < D or D < B by Lemma 81. Now, if B < D then A < B < D < C,
which contradicts B � C in Σ + B. Alternatively, if D < B, then A < D < B < C, which
contradicts A� B in Σ +B. Therefore, no such D exists, and A� C in Σ.

Lemma 35. If Σ and Σ +A are multiconnected trees and A ∈ I(Σ +A) , then the set J1(A,Σ) is a
subset of Σ̌, is non-empty, and every member is equivalent under N(Σ). Therefore there is a single
node J(A,Σ) in V (Σ) which contains all of J1(A,Σ).

Proof. Both of S(A,Σ+A) and S(At,Σ+A) cannot contain either A or At, and thus are subsets of
Σ̌. Therefore J1(A,Σ) ⊆ Σ̌. Since A is informative, neither of S(A,Σ +A) or S(At,Σ +A) can be
empty by Lemma 25. Therefore, L(At,Σ) and L(A,Σ) are non-empty, and J1(A,Σ) is non-empty
also.

Consider two elements B and C of J1(A,Σ). If {B,C} ⊆ L(A,Σ) or {B,C} ⊆ L(At,Σ) then
(B,C) ∈ N(Σ + A) and so (B,C) ∈ N(Σ) by Lemma 30. If B ∈ L(At,Σ) and C ∈ L(A,Σ), then
B � A� Ct in Σ +A. Then A� Ct in Σ by Lemma 34 and so (B,C) ∈ N(Σ). The same is true
by symmetry of A and At if C ∈ L(At,Σ) and B ∈ L(A,Σ). Therefore, for any B,C ∈ J1(A,Σ)
we have B ∼N(Σ) C and so there is a single node which contains J1(A,Σ). We term this node
J(A,Σ).

Definition 36. Let J(A,Σ) be the node in V (Σ) such that contains all of J1(A,Σ). We know that
there is such a node by Lemma 35. For each C ∈ J1(A,Σ), C is also in Σ̌ and J(A,Σ) = ν(C,Σ).
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Definition 37. Let J2(A,Σ) be the set NW (Σ) ∩NW (Σ +A)C .

Lemma 38. If Σ and Σ + Ǎ are multiconnected trees and
{
A,At

}
⊆ NW (Σ +A) then J2(A,Σ) ⊆

J(A,Σ).

Proof. Now if B ∈ J2(A,Σ) then B ⇓ A in Σ + A by Lemma 6.3. Now L(At,Σ + A) is not empty,
and so there exists some Ct ∈ L(At,Σ + A) and ν(Ct,Σ) = J(A,Σ) by Lemma 35. We note that
At � Ct in Σ +A and so C � A in Σ +A. By Lemma 75, either C < Bt or B ⇓ C in Σ +A. But
if B ⇓ C in Σ +A, then B ⇓ C in Σ, which contradicts B ∈ NW (Σ). Therefore C < Bt.

Now, C < A and B ⇓ A and C < Bt. Suppose there were some D ∈ Σ̌ such that C < D < Bt.
Then by Lemma 90, we must have either C < D < A or B < Dt ↓ A. Now, neither of these can be
true, since C < D < A contradicts C � A in Σ + A and B < Dt ↓ A contradicts B ⇓ A in Σ + A.
Therefore there can be no D ∈ Σ̌ such that C < D < Bt. And since C and B are in NW (Σ) we
must have C � Bt in Σ. But then B ∈ ν(C,Σ), and ν(C,Σ) = J(A,Σ).

Therefore if any B ∈ J2(A,Σ) then also B ∈ J(A,Σ) and J2(A,Σ) ⊆ J(A,Σ).

Lemma 39. If Σ and Σ + A are multiconnected trees and
{
A,At

}
⊆ NW (Σ + A), then NW (Σ)

can be partitioned into the non-overlapping subsets J1(A,Σ), J2(A,Σ), and K(A,Σ).

Proof. We first note that splits in NW (Σ) can be partitioned into NW (Σ) ∩ NW (Σ + A) and
J2(A,Σ), and that these two sets do not overlap:

NW (Σ) = [NW (Σ) ∩NW (Σ +A)] ∪
[
NW (Σ) ∩NW (Σ +A)C

]
= [NW (Σ) ∩NW (Σ +A)] ∪ J2(A,Σ)

Since J1(A,Σ) ⊆ NW (A,Σ), we can also partition NW (Σ) into J1(A,Σ) and NW (Σ)∩J1(A,Σ)C :

NW (Σ) = [NW (Σ) ∩ J1(A,Σ)] ∪
[
NW (Σ) ∩ J1(A,Σ)C

]
= J1(A,Σ) ∪

[
NW (Σ) ∩ J1(A,Σ)C

]
.

Using this result, we can further partition NW (Σ) ∩NW (Σ +A) into J1(A,Σ) ∩NW (Σ +A) and
K(A,Σ):

NW (Σ) ∩NW (Σ +A) = [J1(A,Σ) ∩NW (Σ +A)] ∪
[
NW (Σ) ∩ J1(A,Σ)C ∩NW (Σ +A)

]
= [J1(A,Σ) ∩NW (Σ +A)] ∪K(A,Σ).

Since J1(A,Σ) ⊆ NW (A,Σ + A) as well, we can simplify the partition of NW (Σ) ∩ NW (Σ + A)
into just J1(A,Σ) and K(A,Σ).

NW (Σ) ∩NW (Σ +A) = J1(A,Σ) ∪K(A,Σ).

Thus, by partitioning NW (Σ) ∩ NW (Σ + A), we yield a final partition of NW (Σ) into non-
overlapping subsets J1(A,Σ), J2(A,Σ), and K(A,Σ).

Lemma 40. If Σ and Σ +A are multiconnected trees and
{
A,At

}
⊆ NW (Σ +A), then the vertices

V (Σ) are all members of V (Σ +A), except for J(A,Σ).
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Proof. By Lemma 39, we can express the nodes of Σ as:

V (Σ) =
⋃

B∈NW (Σ)

ν(B,Σ)

=

 ⋃
B∈J1(A,Σ)

ν(B,Σ)

 ∪
 ⋃
B∈K(A,Σ)

ν(B,Σ)

 ∪
 ⋃
J2(A,Σ)

ν(B,Σ)

 .

Now, by Lemma 35, any B ∈ J1(A,Σ) has ν(B,Σ) = J(A,Σ). Furthermore, by Lemma 38, any
B ∈ J2(A,Σ) also has ν(B,Σ) = J(A,Σ). Finally, we note that J1(A,Σ) cannot be empty, because
J1(A,Σ) contains L(A,Σ) which cannot be empty because A is an informative split FIXME.
Therefore:

V (Σ) =

 ⋃
B∈J1(A,Σ)

J(A,Σ)

 ∪
 ⋃
B∈K(A,Σ)

ν(B,Σ)

 ∪
 ⋃
B∈J2(A,Σ)

J(A,Σ)


= J(A,Σ) ∪

 ⋃
B∈K(A,Σ)

ν(B,Σ)

 .

Now, by Lemma 33 ν(B,Σ) = ν(B,Σ +A) for every node B ∈ K(A,Σ). Therefore

V (Σ) = J(A,Σ) ∪

 ⋃
B∈K(A,Σ)

ν(B,Σ +A)


V (Σ)− J(A,Σ) ⊆ V (Σ +A).

Lemma 41. If Σ and Σ+A are multiconnected trees and
{
A,At

}
⊆ NW (Σ+A) and A ∈ I(Σ+A)

then J(A,Σ) is not in V (Σ +A)

Proof. First we note that L(A,Σ) and L(At,Σ) are both non-empty, since A is informative in Σ+A
by Lemma 26. Therefore there is some member B ∈ L(A,Σ) and some member C ∈ L(At,Σ). By
the definition of J(A,Σ), both B and C are members of J(A,Σ).

However, we also have that B is equivalent to A and C is equivalent to At under N(Σ + A)
by Theorem 23. But A and At cannot be equivalent to each other under N(Σ + A) since it is not
the case that A = At or A <

(
At
)t. Therefore, B and C cannot be equivalent to each other under

N(Σ + A). Therefore J(A,Σ) is not an equivalence class of N(Σ + A), and so J(A,Σ) is not in
V (Σ +A), since V (Σ +A) contains only equivalence classes under N(Σ +A).

Lemma 42. If Σ and Σ+A are multiconnected trees and
{
A,At

}
⊆ NW (Σ+A) and A ∈ I(Σ+A)

then the move from G(Σ + A) to G(Σ) removes ν(A,Σ + A) and ν(At,Σ + A), adds J(A,Σ) and
otherwise leaves the vertices V (Σ +A) unchanged.

Proof. Any node in V (Σ+A) that is not ν(A) or ν(At) is also in V (Σ) by Lemma 33, and any node
that in V (Σ) that is not J(A,Σ) is also in V (Σ + A) by Lemma 40. The nodes A and At are not
in V (Σ) because A and At are not in Σ and therefore not in NW (Σ). The node J(A,Σ) is not in
V (Σ +A) by Lemma 41.
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Lemma. If B ⇓ A in Σ + A and B 6∈ NW (Σ) and B does not directly wander over any split in
L(A,Σ) ∪ L(At,Σ) then B must wander over some split in J2(A,Σ).

Proof. Because B 6∈ NW (Σ) there must be some C ∈ NW (Σ) such that B ⇓ C. There are three
cases:

• C or Ct is in S(A,Σ) or S(At,Σ)

If C ∈ S(A,Σ) then there must exist some M ∈ min<o S(A,Σ) such that A < M and either
either C = M or M < C or M ↓ C. We must have either B ⇓ M or B < M by Lemma 75.
Now, if C = M , clearly it is not the case that B < M since this would contradict B ↓ C. If
M < C, then it is not the case that B < M because B < M < C would contradict B ⇓ C. If
M ↓ C then B < M ↓ C would also contradict B ⇓ C. Hence we have B ⇓M .
Now, by Lemma 22, either M t ∈ NW (Σ) or M t ⇓ M2 ∈ min<o S(A,Σ). By repeatedly
applying this fact we find some element M3 of min<o S(A,Σ) such that M t

3 ∈ NW (Σ) and
B ⇓M3. Thus, we cannot have C or Ct in S(A,Σ) or S(At,Σ) because this would contradict
our assumption that B does not directly wander over any split in L(A,Σ).

go back and augment/clean-up previous proofs about this?

• A ⊥ C
There must be some F ∈ Σ such that F ↓ A and F t ↓ C. Suppose that there is some Z such
that B < Z ↓ F . Then B < Z ↓ C, which contradicts B ⇓ C. Thus we must have B ⇓ F .
But then B ⇓ F and F ↓ A, for which case see below.

• C ↓ A or Ct ↓ A
Suppose C ↓ A. Consider the set {C} ∪ {Z : C < Z ↓ A} ∪ {Z : C ↓ Z ↓ A}. B wanders
directly over each element of {Z : C < Z ↓ A} by Lemma 92, and over each element of
{Z : C ↓ Z ↓ A} by Lemma 91. Since B wanders directly over C as well, B directly wanders
over every element of this set.

Now, take the maximal element M of the set under the order <o. Clearly M ↓ A. Suppose
that there exists some D ∈ Σ̌ such that M < D ↓ A. Such a D must be in the set above since
C ≤o M < D ↓ A to C ≤o D ↓ A . But then such a D would be more minimal thanM , which
is a contradiction. Therefore, there is no such D and M ⇓ A.
Now suppose that there is some element E ∈ Σ̌ such that M ⇓ E and M ⇓ A. Such an
E cannot be in S(A,Σ) or S(At,Σ) because this would imply that M wanders directly over
some element of L(A,Σ) or L(At,Σ) by the first case of this theorem. If such an E wandered
over A then we would have C ≤o M ↓ E ↓ A, which would put E is the set above. This
would contradict the maximality of M , so E could not wander over A. Finally, we could have
E ⊥ A. This would require that there is some F ↓ A and F t ↓ E. But then M ↓ F ↓ A,
which contradicts the maximality of M . We therefore conclude that there can be no such E.
Therefore, M directly wanders over A and A alone, and so M is in J2(A,Σ). Therefore B
wanders over an element of J2(A,Σ).

Lemma 43. Each edge e(B,Σ) in E(Σ) is a transformed version of edge e(B,Σ+A) where the nodes
ν(A,Σ) and ν(At,Σ) have been replaced with J(A,Σ), and (ii) other nodes have been unchanged.
Furthermore, only the edge e(A,Σ + A) in E(Σ + A) doesn’t correspond to an edge in e(Σ) in this
way.
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Proof. It suffices to show that T (B,Σ) can be created from T (B,Σ + A) by replacing the nodes
ν(A,Σ) and ν(At,Σ) with J(A,Σ). This is because (i) Σ already has A removed from Σ + A. (ii)
the correspondence e(B,Σ) ∼ e(B,Σ +A) is already known and one-to-one. (?)

Let us first consider B in NW (Σ).

• If B ∈ L(A,Σ) then T (B,Σ +A) = ν(A,Σ +A) and T (B,Σ) = J(A,Σ). OK.

• If B ∈ L(At,Σ) then T (B,Σ +A) = ν(At,Σ +A) and T (B,Σ) = J(A,Σ). OK.

• If B ∈ K(A,Σ) then B is in NW (Σ) and NW (Σ + A), and ν(B,Σ) = ν(B,Σ + A). Hence
T (B,Σ) = ν(B,Σ) = ν(B,Σ + A) = T (B,Σ + A). Since this single node is neither ν(A,Σ)
nor ν(A,Σ +A), this is OK.

• IfB ∈ J2(A,Σ) thenB is inNW (Σ) but not inNW (Σ+A). T (B,Σ+A) =
{
ν(A,Σ +A), ν(At,Σ +A)

}
and T (B,Σ) = J(A,Σ). OK.

Thus, if B ∈ NW (Σ) then T (B,Σ) is a transformed version of T (B,Σ +A).
Secondly, let us consider B 6∈ NW (Σ). In this case, B is not in NW (Σ +A) either, and so the

expression for T (B,Σ +A) is:

T (B,Σ +A) =
⋃

C∈NW (Σ+A),B⇓C

ν(C,Σ +A)

=
⋃

C∈L(A,Σ),B⇓C

ν(C,Σ +A) ∪
⋃

C∈{A,At},B⇓C

ν(C,Σ +A) ∪
⋃

C∈L(At,Σ),B⇓C

ν(C,Σ +A) ∪
⋃

C∈K(A,Σ),B⇓C

ν(C,Σ +A).

=
⋃

C∈L(A,Σ)∪{A},B⇓C

ν(A,Σ +A) ∪
⋃

C∈L(At,Σ)∪{At},B⇓C

ν(At,Σ +A) ∪
⋃

C∈K(A,Σ),B⇓C

ν(C,Σ)

Likewise, the expression for T (B,Σ) is:

T (B,Σ) =
⋃

C∈NW (Σ),B⇓C

ν(C,Σ)

=
⋃

C∈L(A,Σ),B⇓C

ν(C,Σ) ∪
⋃

C∈L(At,Σ),B⇓C

ν(C,Σ) ∪
⋃

C∈J2(A,Σ),B⇓C

ν(C,Σ) ∪
⋃

C∈K(A,Σ),B⇓C

ν(C,Σ)

=
⋃

C∈L(A,Σ),B⇓C

J(A,Σ) ∪
⋃

C∈L(At,Σ),B⇓C

J(A,Σ) ∪
⋃

C∈J2(A,Σ),B⇓C

J(A,Σ) ∪
⋃

C∈K(A,Σ),B⇓C

ν(C,Σ).

Since ν(C,Σ) will never equal J(A,Σ) when C ∈ K(A,Σ), we see that T (B,Σ) only contains
J(A,Σ) when B wanders directly over splits in L(A,Σ) ∪ L(At) ∪ J2(A,Σ) = J(A,Σ). In all of
these cases, B also directly wanders over a split in ν(A,Σ) ∪ ν(At,Σ). Clearly this is true when B
wanders over a split in L(A,Σ) ∪ L(At,Σ), since L(A,Σ) ∪ L(At) ⊆ ν(A,Σ) ∪ ν(At,Σ). However,
it is also true when B wanders over a split in J2(A,Σ). This is because if B ⇓ C ∈ J2(A,Σ) then
B ⇓ A since C ⇓ A by Lemma 94. Therefore, T (B,Σ +A) contains ν(A,Σ +A) or ν(At,Σ +A) if
T (B,Σ) contains J(A,Σ).

We also seek to show that if B wanders directly over a split in ν(A,Σ) ∪ ν(At,Σ) then B
wanders directly over a split in J(A,Σ). If B wanders directly over a split in L(A,Σ) ∪ L(At,Σ)
then the conclusion follows. If B does not wander over any split in L(A,Σ) ∪ L(At,Σ), then by
Lemma 6.3 B must wander over some split in J2(A,Σ). Therefore, if B wanders over a split in
ν(A,Σ + A) ∪ ν(At,Σ + A) in Σ + A, then B wanders over a split of J(A,Σ) in Σ. Therefore,
T (B,Σ) contains J(A,Σ) if T (B,Σ +A) contains ν(A,Σ +A) or ν(At,Σ +A).
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Therefore, T (B,Σ) contains J(A,Σ) if and only if T (B,Σ+A) contains ν(A,Σ+A) or ν(At,Σ+
A).

6.4 Proofs: embedded graphs are trees, and the edge e(A) implies A in G(Σ+A).

Theorem 44. All embedded graphs are trees (in progress)

1. The two endpoints of a doubly non-wandering edge A must be distinct. (ν(A) 6= ν(At))

2. Removing such an edge A from Σ + A therefore removes exactly 1 node and 1 edge from
G(Σ +A)→ G(Σ)

3. The number of edges and vertices in an embedded graph of G(Σ) is identical to the number in
G(Σ).

4. Removing A from Σ + A performs a contraction on each embedded graph of G(Σ + A), and
by doing so yields all the embedded graphs of G(Σ). This means that the each embedded graph
of G(Σ) has 1E, 1V, and 0components less than some embedded graph of G(Σ). And every
embedded graph of G(Σ + A) has 1E, 1V, and 0components more than some embedded graph
of G(Σ).

5. There will always be a doubly-non-wandering internal edge, if there are any internal edges.

6. Therefore, we can get down to 0 internal edges (in the embedded graphs and in G(Σ)), in
increments of 1E, 1V.

7. And then there will be only 1 embedded graph with |L| edges, |L|+1 vertices, and 1 component.

8. Therefore, every embedded graph in G(Σ) with B internal splits has |L+B| edges, |L|+B+ 1
vertices, and 1 component.

9. Therefore every embedded graph in G(Σ) is a tree.

1. Why did I have a problem with the old proof?

Theorem 45. Each edge e(A) = (T (At), T (A)) induces the split A. That is, when this edge is cut,
then every x ∈ A is inserted into some single (non-wandering) vertex J(A,Σ). (in progress)

1. Let us assume that G(Σ) is in fact a multiconnected tree (e.g. all embedded graphs are trees)
so that every edge in min<0 S(A,Σ) induces its split and the split of all relevant internal
nodes.

2. Prove a decomposition: that all leaf charaters in A1 are connected to the endpoints of (exactly)
one element of min<0 S(A,Σ).

3. Then prove that the edges that wander must choose endpoints that are behind the elements in
D(A,Σ) that do not wander.

1. How does the set of embedded trees in an MC graph (in general) relate to the splits of that
graph?

(a) prove: every edge in an embedded graph (the multi-edges version) induces a split that
implies the split of its parent edge.
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(b) proof: if the edge (u, v) induces the split Av,u,G|Au,v,G when cut, then Au,v,G is the set of
nodes that attach the v but not u in all embedded graphs when the edge (u, v) is cut in the
embedded graph. Now, choosing an attachment point reduces the number of embedded
graphs. So, the nodes that attach to v but not u in some embedded graphs must be at
least as large as the number that attaches to v but not u in all of the embedded graphs.

(c) In other words, Au,v,G =
⋂
g∈GAu,v,g. This set can only increase as G decreases.

6.5 Defining resolution and embedded graphs

6.5.1 Definition of the graph

Points, edges, and target set A multiconnected graph G is a collection (V,E, T ) of vertex set
V , edge multiset E, and vertex target sets T . Each vertex v ∈ V has a corresponding set of vertices
T (G, v) ⊂ V that we refer to as the targets of v. T (G, v) must not be empty. If T (G, v) 6= {v},
then we say that v is a wandering vertex. In this case, the targets of v are also referred to as the
attachment points of v, and we say that v wanders over them. Only vertices with degree 1 are
allowed to wander, so that in effect edges wander, but vertices in general cannot be arbitrarily set
to be equal. We consider a (standard) graph (V,E) to be equivalent to the multiconnected graph
(V,E, I) where I is the identity map so that all vertices are non-wandering.

No cycles in transitive closure of attachment points We refer to the wandering vertices of
G as

−→
V (G), and the other vertices of G as V̇ (G), so that V (G) =

−→
V (G) ∪ V̇ (G). More interestingly,

consider the transitive closure of the relation “v wanders over w”. This yields the set T+(G, v) of
vertices that v could be identified with through a sequence of 1 or more attachments. We say that
v is above w if w ∈ T+(G, v) and w 6= v.

The last restriction on G is that T+(G, v) must not contain v unless T+(G, v) = {v}. This ensures
that we do not have attachment cycles. In other words, after a vertex chooses an attachment point
from T (G, v), v may be removed from G by replacing v with r(v) in both E and T .

6.5.2 Defining resolution and embedded graphs of a general multiconnected graph G

A (complete) resolution of a multiconnected graph G is not a graph. Instead, a (complete) resolution
is a specific choice of attachment points for all wandering edges7. Thus a resolution r of G is a map
r : V (G) → V̇ (G) such that r(v) ∈ T+(G, v) ∩ V̇ (G). Non-wandering vertices will always have
r(v) = v. Two resolutions of G, r1 and r2, are thus the same if r1(v) = r2(v) for every v ∈ V (G).

The number of distinct resolutions for G is

NR(G) =
∏

v∈V (G)

|T (G, v)|.

Definition 46. We further define r(e) = (r(e1), r(e2)).

Definition 47. Given a resolution r of the multiconnected graph G, we may compute the (singly-
connected) graph r(G) = (r ◦ V (G), r ◦E(G)). This graph is the embedded graph of G produced by
the resolution r8.

7I’m sticking with the idea that it is edges that wander, so that only degree 1 vertices can have equations.
This causes problems, though, if wandering vertices can wander over other wandering vertices. We avoid this when
enumerating embedded graphs by only allowing wandering vertices to choose non-wandering vertices as attachment
points.

8Note that the other definition (of resolving edges instead of vertices) becomes problematic if the multiset E(G)
ever has edges with count> 1, since it does not allow identical edges to be resolved differently.
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6.5.3 Splits and connectedness in a multiconnected graph G

For an edge e = (u, v) in a singly connected graph G, we define C(v,G) to be the set of vertices in
g that are connected to v in G:

C(v,G) = {w ∈ g.V |w ∼ v in g} .

We also define the set D(v,G) = C(v,G)C to the be set of vertices of G that are not connected to
v.

We extend these definitions to multiconnected graphs G by defining C (resp. D) to refer to
those points that are connected (resp. disconnected) in every resolution of G:

C(v,G) = ∩rC(r(v), r(G))

D(v,G) = ∩rD(r(v), r(G))

The split induced by removing e in G can thus be defined in a single way, regardless of whether G
is multiconnected or singly connected. We define the split induced by e in G to be σ(et,G)|σ(e,G).

Definition 48. Here the set σ(e,G) is defined as:

σ(e,G) = C(e2,G/e) ∩D(e1,G/e)

6.5.4 Edge contraction of multiconnected graphs

First, we first define the replacement function ·|X→y on vertices as:

s|X→y =

{
y if s ∈ X
s otherwise.

Then it follows that:

S|X→y =
⋃
s∈S

s|X→y

=

{
S if S ∩X = ∅(

S ∩XC
)
∪ {y} otherwise.

Second, given an edge e and a vertex v, we define a more specialized replacement function |e→v on
vertices, edges, and target sets. For a point w, we define w|e→v = w|{e1,e2}→v. For an edge f we
define f |e→v as {∅} if e = f , and (f1|e→v, f2|e→v) otherwise. Finally, for target sets T we define
T |e→v such that T |e→v(e1) and T |e→v(e2) are undefined, T |e→v(v) = v, and T |e→v(w) = T (w)|e→v
if w 6∈ {e1, e2, v}.

In theory, this definition would mean that, when contracting an edge e in which both endpoints
wander to a vertex v, all targets of e1 and e2 are lost instead of being (perhaps) merged to create a
larger target set for v. However, in this paper we only consider contracting doubly-non-wandering
edges. In this case T |e→v(v) = v is exactly what we want.

Third, given an edge e that is doubly non-wandering in G, we define the contraction G|e→v of
the graph G = (E, V, T ) as

G|e→v = (V |e→v, (E/e) |e→v, T |e→v).

Here,
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V |e,v =
⋃
w∈V

w|{e1,e2}→v

(E/e)|e,v =
⋃

f∈E/e

f |e→v

Now, if E(G) does not contain the edge e, then the only change here is to replace e1 and e2 with v.
If e1 and e2 were originally in different connected components of G, then this will connect the two
originally separate components.

6.5.5 Contractions and resolutions together

Resolutions of G and resolutions of G|e→v have a particular relationship. First, given that e1 and e2

are non-wandering vertices of G and that v is not a vertex of G, then a resolution r of G naturally
forms a resolution r|e→v on G|e→v.

Definition 49. If r is a resolution of a multiconnected graph G, and e1 and {e1, e2} are non-
wandering in G and v 6∈ V (G), then we define the contracted resolution r|e→v as follows:

• r|e→v(e1) and r|e→v(e2) are undefined.

• r|e→v(v) = v.

• r|e→v(w) = r(w)|e→v otherwise.

Lemma 50. Let G be a multiconnected graph, and let e by a doubly-nonwandering edge in G, and
let v 6∈ V (G). Let s be a resolution of G|e→v. Then there exists some resolution r of G such that
s = r|e→v.

Proof. We may construct an r(w) such that:

r(w) =


undefined if w = v

w if w = e1 or w = e2{
e1 or e2 if s(w) = v

s(w) otherwise
otherwise.

Thus thus number of such r’s is 2n, where n is the number of vertices w in V (G|e→v)/v where
s(w) = v.

Let us now check that r|e→v(w) = s(w) for w ∈ V (G).

1. s(e1) and s(e2) are undefined, since e1 and e2 are not in V (G|e→v); r|e→v(e1) and r|e→v(e2)
are undefined by the definition of r|e→v.

2. s(v) = v, since v is non-wandering; r|e→v(v) = v by the definition of r|e→v.

3. If w 6∈ {e1, e2, v} then r|e→v(w) = r(w)|e→v. Now, if s(w) = v, then r|e→v(w) = e1|e→v or e2|e→v =
v. Therefore, r|e→v(w) = s(w). If s(w) 6= v, then r|e→v(w) = r(w)|e→v = s(w)|e→v. However,
s(w)|e→v = s(w), since s(w) ∈ V̇ (G|e→v) and V̇ (G|e→v) does not contain e1 or e2.

Therefore, for all w ∈ V (G|e→v), r|e→v(w) = s(w) and so r|e→v = s. [Also mention their
domains].
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Theorem 51. If {e1, e2} are non-wandering in G and v 6∈ V (G) and r is a resolution of G, then

r(w)|e→v = r|e→v(w|e→v)

for any w in V (G). Further, r(w)|e→v = v if w ∈ {e1, e2} or r(w) ∈ {e1, e2}. Otherwise, r(w)|e→v =
r(w).

Proof. There are three cases:

• [w is on the edge] If w ∈ {e1, e2} then r(w) = w because e1 and e2 are non-wandering,
and so r(w)|e→v = v. Also w|e→v = v and so r|e→v(w|e→v) = r|e→v(v) = v. Therefore,
r(w)|e→v = r|e→v(w|e→v) = v in this case.

• [w resolves to the edge] If w 6∈ {e1, e2} but r(w) ∈ {e1, e2} then w|e→v = w and r(w)|e→v =
v and re→v(w|e→v) = r|e→v(w) = v. Therefore, r(w)|e→v = r|e→v(w|e→v) = v in this case.

• [w is neither on the edge, nor resolves to it] If w 6∈ {e1, e2} and r(w) 6∈ {e1, e2}
then w|e→v = w and r(w)|e→v = r(w). Thus r|e→v(w|e→v) = r|e→v(w) = r(w). Therefore,
r(w)|e→v = r|e→v(w|e→v) = r(w) in this case.

Corollary 52. If {e1, e2} are non-wandering in G and v 6∈ V (G) and r is a resolution of G, and
W ∈ V (G) then

r(W )|e→v = r|e→v (W |e→v) .

Theorem 53. If {e1, e2} are non-wandering in G and v 6∈ V (G) and e ∈ E(G) and r is a resolution
of G then r(G)|e→v = r|e→v(G|e→v).

Using the vertex-based resolution scheme, we have:

r(G)|e→v = (r (V (G)) , r (E(G))) |e→v
= (r (V (G)) |e→v, [r (E(G)) /e] |e→v)
= (r (V (G)) |e→v, r (E(G)/e) |e→v)
= (r|e→v (V (G)|e→v) , r|e→v ([E(G)/e] |e→v)) .

We also have

r|e→v(G|e→v) = r|e→v(V (G)|e→v, [E(G)/e] |e→v, T (G)|e→v)
= (r|e→v (V (G)|e→v) , r|e→v [E(G)/e] |e→v) .

Therefore r(G)|e→v = r|e→v(G|e→v).
Note: Resolutions on G can be divided into equivalence classes based on whether a contraction

·|e→v yields the same projected resolution.

Lemma 54. If r is a resolution of G then r(G/e) = r(G)/r(e)

Proof. So, by the definition of r we have:

r(G/e) = (r(V (G/e)), r(E(G/e)))
= (r(V (G)), r(E(G)/e)) .

Now, E(G) is a multiset. Therefore, if 1 or more edges in E(G) map to r(e), then r(e) will have
a count of 1 less in r(E(G)/e) than in r(E(G)). If E(G) contains no edges that map to r(e), then
r(E(G)/e) = r(E(G)) = r(E(G))/r(e). In both cases, r(E(G)/e) = r(E(G))/r(e).
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6.5.6 Connectedness in multiconnected graphs

Single connected graphs For singly connected graphs, we have

• for any x, y ∈ V (G): x ∼ y in G =⇒ x|e→v ∼ y|e→v in G|e→v

• for any x, y ∈ V (G): x 6∼ y in G =⇒ x|e→v 6∼ y|e→v in G|e→v if e ∈ E(G).

• Therefore, we also have that

1. for any x, y ∈ V (G) if e ∈ E(G) then x|e→v ∼ y|e→v in G|e→v =⇒ x ∼ y in G.

2. for any x, y ∈ V (G) if e ∈ E(G) then (x ∼ y in G ⇐⇒ x|e→v ∼ y|e→v in G|e→v)

Resolutions of multiconnected graphs We show above that r(G/e) = r(G)/r(e). Let us now
assume that the contracted edge e is doubly non-wandering in a multiconnected graph G, so that
r(e) = e. Then r(G/e) = r(G)/e.

Now, let us consider the connectivity of r(x) and r(y) in the singly connected graph r(G):

r(x) ∼ r(y) in r(G) ⇐⇒ r(x)|e→v ∼ r(y)|e→v in r(G)|e→v.

if e ∈ E(r(G)) and r(x), r(y) ∈ V (r(G)). Now, E(r(G)) = r(E(G)) and V (r(G)) = r(V (G)). Thus
the condition is that e ∈ r(E(G)) and that r(x), r(y) ∈ r(V (G)). A sufficient condition is thus that
x, y ∈ V (G) and e ∈ E(G).

Since r(·)|e→v = r|e→v(·|e→v) we also have for any x, y ∈ V (G) and doubly non-wandering edge
e ∈ E(G):

r(x) ∼ r(y) in r(G) ⇐⇒ r|e→v(x|e→v) ∼ r|e→v(y|e→v) in r|e→v(G|e→v).

Resolutions of multiconnected graphs with a split We now consider connectivity in r(G)
and r(G)|e→v when an edge f in a multiconnected graph G is cut. We thus replace G with G/f ,
obtaining the new conditions: x, y ∈ V (G/f) = V (G) and e ∈ E(G/f). This is the same as the
condition that x, y,∈ V (G) and e ∈ G and f 6= e. Under these conditions, we have:

r(x) ∼ r(y) in r(G/f) ⇐⇒ r|e→v(x|e→v) ∼ r|e→v(y|e→v) in r|e→v([G/f ] |e→v).

Since (G/f)|e→v = G|e→v/f |e→v we finally have:

r(x) ∼ r(y) in r(G/f) ⇐⇒ r|e→v(x|e→v) ∼ r|e→v(y|e→v) in r|e→v(G|e→v/f |e→v).

Thus we could write:

r(x) ∼ r(y) in r(G/f) ⇐⇒ r′(x′) ∼ r′(y′) in r′(G′/f ′)

where (·)′ indicates (·) |e→v. However, note that the requirement that f 6= e is crucial, since G′/f ′
is not split into two components by f ′ if e = f .
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Mapping between resolutions of G and resolutions of G|e→v We now seek to determine
what σ(f |e→v,G|e→v) tells us about σ(f,G).

Lemma 55. If G is a multiconnected graph, x ∈ V (G), v 6∈ V (G) and e ∈ E(G), then C(x,G)|e→v =
C(x|e→v,G) and D(x,G)|e→v = D(x|e→v,G|e→v).

Proof. We begin by considering y ∈ C(x,G), and note that for any resolution r′ on G|e→v, there
exists a resolution r on G such that r|e→v = r′. Now, r(x) ∼ r(y) in r(G) by our premise, and
so r′(x|e→v) ∼ r′(y|e→v) in r′(G|e→v). Therefore y|e→v ∈ C(x|e→v,G|e→v) and C(x,G)|e→v ⊆
C(x|e→v,G|e→v).

Likewise, if y 6∈ C(x,G) then there is some resolution r such that r(x) 6∼ r(y) in r(G). Therefore,
there is some resolution r|e→v such that r|e→v(x|e→v) 6∼ r|e→v(y|e→v) in r(G|e→v), and so y|e→v 6∈
C(x|e→v,G|e→v).

Now, if y′ ∈ C(x|e→v,G|e→v), then there must exist a y in V (G) such that y|e→v = y′. We
must have y ∈ C(x,G), since the opposite would contradict our premise that y′ ∈ C(x|e→v,G|e→v).
Therefore, y′ ∈ C(x,G)|e→v, and C(x,G)|e→v ⊆ C(x|e→v,G|e→v).

Combining the two ⊆ statements, we get C(x,G)|e→v = C(x|e→v,G|e→v). By symmetry, we also
have D(x,G)|e→v = D(x|e→v,G|e→v).

Lemma 56. If G is a multiconnected graph, and e, f ∈ E(G) and e 6= f and e is doubly non-
wandering in G, then

σ(f,G) =

{
σ(f |e→v, G|e→v) ∪ {e1, e2} /v if v ∈ σ(f |e→v, G|e→v)
σ(f |e→v, G|e→v) otherwise.

Proof. Now, we note that σ(e,G) = C(e2,G/e) ∩D(e1,G/e). Therefore

σ(f,G)|e→v = [C(f2,G/f) ∩D(f1,G/f)]

= C(f2,G/f)|e→v ∩D(f1,G/f)|e→v.

Now, if f ∈ G/e and e is doubly non-wandering in G, then we have

σ(f,G)|e→v = C(f2|e→v, (G/f) |e→v) ∩D(f1|e→v, (G/f) |e→v)
= C(f2|e→v,G|e→v/f |e→v) ∩D(f1|e→v,G|e→v/f |e→v)
= σ(f |e→v,G|e→v).

This tells us how to construct σ(f |e→v,G|e→v) from σ(f,G). However, how do we construct σ(f,G)
from σ(f |e→v,G|e→v)? If σ(f |e→v,G|e→v) does not contain v, then σ(f,G) = σ(f |e→v,G|e→v). If
σ(f |e→v,G|e→v) does not contain v, then σ(f,G) will be σ(f |e→v,G|e→v)/v plus either e1 or e2 or
both. Now, since e 6= f then e1 and e2 are always connected to each other in G/f . Therefore, they
will either both be in C(f2,G/f) and D(f1,G/f), or both be absent. Therefore, they will either
both be present in σ(f,G) or both absent.

6.5.7 Proof of split representation in G(Σ +A)

The proof has two parts. First, for edges that are not A, each split in Σ should be essentially
unchanged in Σ +A. However, for the split on the edge A, we must do induction, as follows:
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Definition 57. We define the statement SR(Σ) to be

SR(Σ) = ν(C) ∈ σ(e(B), G(Σ)) for any B,C ∈ Σ̌ where B < C or B ↓ C
ν(C) 6∈ σ(e(B), G(Σ)) for any B,C ∈ Σ̌ where C ↓ B or C ⊥ B.

Claim 58. We then claim that if Σ is a multiconnected split set, and Σ + A is a multiconnected
split set where A is doubly non-wandering in Σ +A, then SR(Σ) =⇒ SR(Σ +A).

Note G(Σ) = G(Σ +A)|e(A)→J(A)

Reasoning The reasoning behing this argument goes as follows.
If A < C or A ↓ C then either A < M ≤ C or A < M ↓ C for some M ∈ min<o S(A,Σ). By

the previous iteration of the theorem, ν(M) ∼ ν(C) by any resolution r when ν(M) is cut. Why
can we assume this means that ν(A) ∼ ν(C) when e(A) is cut?

Case 1: If A�M then ν(A) ∼ ν(M) in G(Σ)/e(A) and therefore in any resolution.
Case 2: If M t 6∈ NW (Σ + A) then the attachment points of M t either equal ν(A,Σ + A) or

are behind M ′i some that A�M ′i . ...here...

6.6 Rest of proof of representation

Lemma. If Σ is a multiconnected split set and A ∈ Σ̌ and neither A nor At directly wander in Σ,
then it is never the case that ν(At) = ν(A).

Proof. If ν(At) = ν(A) then (A,At) ∈ N(Σ). Since A 6= At, this would require that A � At.
However, A < At is always false, so this cannot happen.

Theorem 59. If Σ is a multiconnected split set and (S1, S2) is a multi-edge of G(Σ), then S1 and
S2 are disjoint.

Proof. The edge (S1, S2) must equal (T (At), T (A)) for some split A ∈ Σ̌ by the definition of E(Σ).
If S1 and S2 are not disjoint, then there must be

Case 1. At ∈ NW (Σ̌) and A ∈ NW (Σ̌)

Then (S1, S2) = (ν(At), ν(A)). If S1 and S2 overlap, then ν(At) = ν(A), and by Lemma 6.6 this
cannot happen. Therefore, S1 and S2 are disjoint in this case.

Case 2. At ∈ NW (Σ̌) and A 6∈ NW (Σ̌)

Then S1 = ν(At) and S2 contains ν(At). This would require that there is some B ∈ NW (Σ̌) such
that A ⇓ B and (At, B) ∈ N(Σ). Now, At 6= B because A ↓ B. Furthermore, A 6< B because
A ↓ B. Therefore S1and S2 are disjoint in this case.

Case 3. At 6∈ NW (Σ̌) and A ∈ NW (Σ̌).

By symmetry, the previous case proves this case.

Case 4. At 6∈ NW (Σ̌) and A 6∈ NW (Σ̌)

Then there must exist splits C ∈ NW (Σ̌) and D ∈ NW (Σ̌) and At ⇓ C and A ⇓ D such that
ν(C) = ν(D) and thus (C,D) ∈ N(Σ). Since C ⊥ D, we cannot have either C = D or C < D, and
thus (C,D) ∈ N(Σ) cannot occur. Therefore, S1 and S2 are disjoint in this case

Since T (At) and T (A) must be disjoint in all cases, S1 and S2 must be disjoint.
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Lemma 60. If Σ is a multiconnected split set and A ∈ Ǐ(Σ), then Σ−A fails to be a multiconnected
split set if and only if A and At both directly wander in Σ.

Proof. For any such edge A, let us assume that Σ − A is not a multiconnected split set. All the
pairs of splits in Σ− A must satisfy the pairwise constraints, since they did so in Σ. Furthermore,
A is not a leaf split, and so removing A will not violate the requirement that all leaf splits must be
in Σ. Therefore, Σ−A must contain some pairs of splits B and C such that

1. B ⊥ C

2. At ↓ B and A ↓ C

3. There is no split D ∈ Σ̌−A that Dt ↓ B and D ↓ C.

Now, if At does not wander directly over B in Σ, then there is some split E ∈ Σ such that
At < E ↓ B. Furthermore, we also have Et < A ↓ C. The split E would also be in Σ − A since
E 6= A. This would contradict point 3 above, and so At ⇓ B in Σ. The same argument can be
repeated to demonstrate that A ⇓ C in Σ. Thus, if Σ is multiconnected split set but Σ− A is not,
then A and At must both directly wander in Σ.

Now, assume that A and At directly wander in Σ. There are therefore some splits B and C in
Σ such that At ⇓ B and A ⇓ C. Since B1 ∪B2 ⊆ A1 and C1 ∪C2 ⊆ A2, we have B ⊥ C. Therefore,
if Σ − A is a multiconnected split set, there must be some split D ∈ Σ − A such that Dt ↓ B and
D ↓ C. But then, by Lemma 78, either D < A or A < D. If D < A, then At < Dt ↓ B and At

does not directly wander. If A < D, then A < D ↓ C, and A does not directly wander. Since both
cases contradict our assumption that A and At directly wander in Σ, there can be no such split
D ∈ Σ−A, and Σ−A fails to be a multiconnected split set. Therefore, if A and At directly wander
in Σ, then Σ−A is not a multiconnected split set.

Definition 61. A contraction of a simple edge e = (v1, v2) in a multiconnected graph G that
contains e is a new graph G′ obtained by

1. Removing e from the edges of G

2. Removing the vertices v1 and v2 and replacing them with a (possibly new) vertex w

3. Replacing occurrences of v1 and v2 with w in all multi-edges.

Note that, if an edge (S1, S2) has S1 = {v1, v2} then this process results in S′1 = {w} since S′1 is a
set, not a multi-set. Therefore, contraction can make complex9 edges into simple10 edges.

Lemma. If Σ is a multiconnected split set containing A and B, and ν(A,Σ) 6= ν(B,Σ) then either

• A 6< Bt

• A < Bt and there exists a C ∈ Σ̌ such that A < C < Bt.

• A directly wanders in Σ

• B directly wanders in Σ

Proof. This follows directly from the definition of the equivalence relation N(Σ) and from the
definition of A� Bt in Σ.

9Use this as a definition!
10Use this as a definition!
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Lemma 62. If Σ and Σ + A are multiconnected split sets and A ∈ I(Σ + A) and B ∈ Σ̌, then
ν(B,Σ +A) ⊆ ν(B,Σ) ∪

{
A,At

}
.

Proof. Suppose that ν(B,Σ + A) 6⊆ ν(B,Σ) ∪
{
A,At

}
. Then there exists some ordered split C ∈

ν(B,Σ +A) such that C 6∈ ν(B,Σ)∪
{
A,At

}
. Therefore C 6∈

{
A,At

}
and so C ∈ Σ̌. Furthermore,

C ∈ NW (Σ + A) does not wander directly over any split in Σ + A, and so does not wander
over any split in Σ, and so C ∈ NW (Σ̌ + A + At). Since C ∈ ν(B,Σ + A), there exists no
ordered split E ∈ Σ̌ such that B < E < Ct. Removing the split A from Σ cannot introduce a
new split between B and Ct and so we must have B � Ct in Σ, and thus C ∈ ν(B,Σ). This
contradicts our assumption that C 6∈ ν(B,Σ) ∪

{
A,At

}
. Therefore we conclude by contradiction

that ν(B,Σ +A) ⊆ ν(B,Σ) ∪
{
A,At

}
.

Claim 63. Also, the size of ν(B,Σ) cannot increase by adding an edge A since, even if A or At

becomes part of ν(B,Σ +A), at least one split must now be behind A in Σ +A, and thus that split
must leave ν(B,Σ +A).

Lemma 64. If Σ is a multiconnected split set, and A ∈ I( ˇΣ +A) and neither A nor At directly
wander in Σ +A, then any node in Σ +A that is not ν(A) or ν(At) is unchanged.

Proof. Suppose that some node v ∈ V (Σ + A) is not present in V (Σ). Since v is an equivalence
class of ordered splits that do not wander in Σ, then there exists some C ∈ NW ( ˇΣ +A) such that
v = ν(C,Σ + A). Since this node is not present in V (Σ) then we must have that ν(C,Σ + A) 6=
ν(C,Σ). Since ν(C,Σ + A) does not contain either A or At, then by Lemma 62 we must have
ν(C,Σ +A) ⊆ ν(C,Σ).

Therefore there must be some D in ν(C,Σ) that is not in ν(C,Σ + A). Since D ∈ ˇΣ +A, then
either D 6∈ NW ( ˇΣ +A) or C 6� Dt in Σ +A.

Case 1. Suppose C 6� Dt in Σ + A. Since C � Dt in Σ, then we must have some E such that
C < E < Dt. However, since E is in ˇΣ +A but not in Σ̌, then E must be either A or At.
Furthermore, since we cannot have both C < A and C < At, we must have either C � A� Dt or
C � At � Dt. However, these cases would imply that ν(C,Σ + A) equals either ν(At,Σ + A) or
ν(A,Σ + A), both of which contradict the asumptions of this lemma. Therefore, this case cannot
occur.

Case 2. Suppose D 6∈ NW ( ˇΣ +A). Then D ⇓ A or D ⇓ At. Since each implies the other, we
have D ⇓ A and D ⇓ At, but D does not wander over any other split in ˇΣ +A. Then there is no
E ∈ ˇΣ +A such that C < E < Dt because this is true in Σ, and adding A cannot change this since
D ↓ A and D ↓ At.

Definition 65. We define the set of edges to the left of A as L(A,Σ) ≡
{
B ∈ Σ : B < A ∨At ↓ B

}
.

Lemma 66. If B is a minimal size split in L(A,Σ)∩ I(Σ), then Bt does not wander over any split
in Σ, and B does not directly wander in Σ.

Proof. Consider any B that is a mininimal size split in L(A,Σ) ∩ I(Σ).

Case 1. Assume that there is some split C ∈ Σ̌ such that Bt ↓ C. Now if At ↓ B, then At ↓ C since
Bt ↓ C. Alternatively, if B < A, then At ↓ C, since B ↓ C. Thus, in either case, C ∈ L(A,Σ).
Thus, in either case C ∈ L(A,Σ). Furthermore, since Bt ↓ C, C cannot be a full split. C must
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be an informative split, since it would otherwise be implied by one of the leaf splits11. Therefore,
C ∈ L(A,Σ) ∩ I(Σ).
Now, since B ↓ C, the size |C1 ∪ C2| of C must be smaller than the size of B. This contradicts
the assumption that no split in L(A,Σ) ∩ I(Σ) has a smaller size than B. Therefore Bt does not
wander over any split in Σ.

Case 2. Assume that B ⇓ C. Then B ↓ C and B < A. Then either,

• C < A. This cannot occur, because |C| < |B| and C ∈ L(A,Σ) ∩ I(Σ)

• Ct < A. This cannot occur for the same reason.
• A ↓ C. This cannot occur, because it would mean B < A ↓ C. This is indirect wandering.
• At ↓ C. This cannot occur, because |C| < |B| and C ∈ L(A,Σ) ∩ I(Σ)

• A ⊥ C. In this case there must be some D such that B < D ↓ C. This is indirect wandering.

Therefore, B does not directly wander in Σ.

Lemma 67. If Σ is a multiconnected split set, then removing a minimal size split B ∈ L(A,Σ)∩I(Σ)
from Σ yields a split set Σ−B which is also a multiconnected split set.

Proof. Lemma 66 implies that neither B or Bt directly wander in Σ. Therefore Lemma 60 implies
that Σ−B is a multiconnected split set since B ∈ I(Σ).

Lemma 68. 67For any edge A ∈ Σ, the multiconnected split set Σ can be transformed to a multi-
connected split set Σ′ ≡ Σ∩ (L(A,Σ) ∩ I(Σ))C by incrementally removing splits that do not directly
wander. Each split set in this sequence is also a multiconnected tree.

Proof. Repeatedly removing a minimal size split of L(A,Σ) ∩ I(Σ) always results in a new multi-
connected tree by Lemma 67. By Lemma 66, such splits do not directly wander in Σ.

Since this procedure can be continued as long as |L(A,Σi) ∩ I(Σi)| > 0, it must eventually
terminate as some Σ′ where |L(A,Σ′) ∩ I(Σ′)| = 0. Such a split set contains every split that in Σ
that is not in L(A,Σ) ∩ I(Σ), but none that are, and therefore equals Σ ∩ (L(A,Σ) ∩ I(Σ))C .

Lemma 69. The graph G(Σ) contains no self-loops.

Proof. Each edge connects vertices (At, A). For this edge to become a self-loop when edges are
joined to form nodes, it would be necessary to identify A and At in step 4. However, this would
require that A ∼ At according to the identity relation of {(A,B) : A = B ∨ A � Bt}. However,
A 6= At and A 6< At, so A 6∼ At. Therefore, the graph G(Σ) cannot contain a self-loop.

Claim. If Σ is a multiconnected split set, and Σ′ ⊂ Σ is also a multiconnected split set, then there
is a sequence of Σ1 = Σ,Σ2, . . . ,Σn = Σ′ such that each Σi+1 removes a single edge Ai from Σi,
where Ai does not directly wander in G(Σ). Thus there is a sequence of graphs G(Σi) from Σ to Σ′

that is formed by contracting non-wandering edges.

Proof. <insert>

Remark 70. Perhaps we should stipulate that, for multiconnected graphs, you can only have equa-
tions on degree-1 nodes.

11Improve this justification
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Let us generalize the proof that a collection of pairwise compatible splits can be inserted into a
single tree, and claim that

Claim 71. A collection of extended-compatible splits can be combined into a multiconnected tree
graph. We extend the concept of extension so that we can extend a tree with partial splits, leading
to some edges with multiple attachment points. These extensions correspond to embedded graphs
that are trees, each of which is extended by an edge that implies the partial split.

Proof. OK, so take a split set Σ and its graph G(Σ). Any new split A such that (i) Σ + A is a
multiconnected tree and (ii) A does not wander over any B ∈ Σ has the property that A maps to
some specific node in G(Σ). We assume that embedded graphs of G(Σ) are trees. Therefore, this
edge maps to a node in each of these trees, and extends each of the tree by an edges that implies
A.

Claim 72. A contraction of G implies a contraction of any g ∈ G.

Proof. Given that the edge e being contracted has two endpoints in g that have not been made
identical by the process of resolving wandering edges, then, yes, contracting e in G must correspond
to a contraction in g also.

Interestingly, I think that it would be useful to define a contraction so that we only “contract”
edges where the endpoints are not equal. This way, contraction cannot (a) remove cycles (b) is
always the reverse of some extension and (c) always reduces the number of nodes by 1. (Check
Semple & Steel book).

Claim 73. An extension of G implies an extension of any g ∈ G.

Proof. Well, this becomes problematic, if you add an A ↓ B where C < A and D < A. So, only
add non-wandering edges.

6.7 Graph-related Theorems

• Lemma 83.

• Lemma 89.

• Theorem ??.

6.8 Splits implied by multiconnected trees

6.8.1 Edges in embedded graphs imply splits that are the same or more resolved

First note that for any edge a inducing a split A on a multiconnected graph G, the corresponding
split A′ induced by the corresponding edge a′ in any embedded graph G′ of G must imply A. This
is because the edge a′ = (x′, y′) must have x′ connected to all leaves in A1 and y′ connected to all
leaves in A2 when the edge a′ is cut.
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6.8.2 Counter-examples: split sets that cannot be represented

Consider a multiconnected graph G with edges a and b that induces splits A and B, respectively.
Suppose that A = 12|345 and B = 123|45X. Now, this means that some embedded trees have
X12|345 and some have 12|X345, whereas all embedded trees have 123|45X. But actually, X12|345
is not compatible with 123|45X. Therefore, a multi-connected graph cannot have edges that are
not close in this way.

To generalize this argument, if a split collection Σ contains a split A, and Σ jointly implies
another split A′ with A′ =⇒ A but A′ 6= A, then the collection Σ cannot be represented by a
multiconnected graph. For suppose (without loss of generality) that A′ implies x+A1|A2. The fact
that the graph contains an edge representing A means that some embedded trees display x+A1|A2

and some embedded trees display A1|A2 + x. But this contradicts the hypothesis that Σ jointly
implies A′.

6.9 Questions

• Q1: How does resolving a multiconnected tree relate to the restrictions on resolving a multi-
connected split set?

– The only restriction is that we can’t resolve A ⇓ B if A ↓ C ↓ B. So, what happens if we
do this anyway?

∗ Basically, we would be saying that A′ < B but A ↓ C, and C can attach on both
sides of B.
∗ This could be resolved either by restricting C also (so that it is on the left side of
B), or by making A stop wandering over C.

• Q2: How do I prove that this way of constructing a graph is what corresponds to the multicon-
nected split set? (Instead of just stipulating that this is the graph that we will be considering.)

• Q3: Can I just demonstrate that G(Σ) represents Σ w/o using any of the multiconnected split
set theorems?

– Well, in order to work on the graph, we have to use the split relationships anyway: so,
we may as well do things in terms of splits, anyway. (?)

– Can I just demonstrate that G(Σ) represents Σ w/o using the rules on the multiconnected
split set?

– Would trying to forge ahead via brute force lead to insight into why we need the rules?

7 Algorithm for finding supported splits

7.1 Estimating branch lengths for the partial splits?

8 Results

Here we show some examples of how the multiconnected tree reveals hidden structure in posterior
distributions from real and simulated data sets.
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(b) 95% Majority Consensus (c) 95% Extended Majority Consensus

Figure 13: Multiconnected trees help resolve structure in trees with short branches. Sequences
were simulated on the true tree (a) that has very short internal branches. Using the 95% majority
consensus (b) only one internal branch is discovered. However, the extended majority consensus (c)
reveals three new branches by displaying partial splits. Partial splits can group adjacent full splits,
thus yielding longer branches with sufficient support even the full splits correspond to very short
branches.
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(b) 95% Extended majority consensus

Figure 14: EF-Tu 24 taxon tree: Majority consensus and Extended Majority Consensus. Since the
Eubacteria and the Archaea are separated by a long branch, the support for each group is strong,
but each group provides low precision in estimating the root of the other group. (a) Because of this,
the M0.95 consensus tree is not able to represent much structure in the phylogeny of the Archaea,
leading to a comb-like figure. (b) Because theM ′0.95 consensus tree is able to represent partial splits,
it is able to reveal previously hidden structure in the posterior distribution. All branches inside each
cloud correspond to partial splits, and the extent of the clouds give a rough idea of the range over
which the wandering branch may attach.

8.1 Example 1 - Simulated data / Caterpillar tree

(See figure 13)

8.2 Example 2: EF-Tu / bad reciprocal rooting

(See figure 14)

8.3 Example 4: 5s rRNA / 48 taxa

(See figure 15)
We now consider a real data example. The data consists of 48 5S rRNA sequence taken from

across the Tree of Life. While the tree domains Eukarya, Archaea, and Eubacteria are well sup-
ported, the majority consensus tree finds little structure inside each domain at the 95% level.

9 Discussion

People usually display 50% consensus trees because there is in fact some supported structure that
is invisible in 90% consensus trees. This structure is often visible in 90% extended consensus trees,
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(a) 95% Majority Consensus (b) Multiconnected-tree – Graph Representation

(c) Multiconnected-tree – “Cloud” Representation (d) Polytomy Clouds

Figure 15: The extended majority consensus reveals structure inside polytomies. The phylogeny
distribution is a posterior distribution for a phylogeny of 48 5S rRNA sequences from throughout
the range of living organisms. (a) The majority consensus discovers only 15 full splits, out of a
possible 45. (b) The extended majority consensus recovers an addition 9 partial splits, revealing
hidden structure in the Archaea especially. (c) The cloud representation more clearly portrays
attachment ranges and nested wandering relationships. (d) The boundaries of the clouds correspond
to polytomies on the majority consensus tree.
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though.
We suspect that researchers are inclined to use an Ml consensus tree with a small value of l in

order to capture full splits with low support that imply partial splits with high support.

Other discussions of rogue taxa Thomson and Shaffer, Systematic Biology, early 2010 or late
2009.

http://treethinkers.blogspot.com/2010/02/going-rogue.html

Commonly suggested alternatives [alternative #1] It is commonly claimed that this could
be simply handled by removing a few leaves, finding a highly supported tree on the remaining taxa,
and then computing the probabilities for each attachment point. However, we take a different route,
by focussing on supported phylogenetic hypothesis (partial splits) instead of on trees. Why?

[#alternative #2] By specifying nodes as an attachment point, we automatically allow at-
taching to every branch adjacent to the node. So, specifying that you could attach to branches
would allow more flexibility... you could specify fewer trees.

[alternative #3] Instead of requiring that we attach to all nodes in between two possible
attachment points, we could allow separate attachment points. This would allow more fine-tuning.

[reason #1] We are not trying to specify a set of trees, per se. We are trying to specify a set
of (possibly partial) splits.

[reason #2] By focussing on the possible locations of some specific clade, we lose the ability
to consider uncertainty for all remaining clades, since we must define locations on a fixed skeleton
topology.

Cranston and Rannala’s method might be further extended to allow partial splits that form a
multiconnected tree. This would further decrease the necessity for pruning taxa.

Why do arrows connect to nodes rather than to branches? Because of the two-step res-
olution procedure, arrows may first be resolved to connect to a specific node; a new branch may
then be inserted to reduce the resulting multifurcation, effectively allowing the arrow to attach to
a branch adjacent to the node.

Partial Splits and the requirement to attach at every node between two attachment
points As represented in figure 2, this makes the representation more lossy that it could, in theory,
be. This is a direct result of requiring that information from the posterior be represented in terms
of partial splits.

Interpreting Multiconnected Trees Biologists must correctly interpret consensus trees in or-
der to them to be a helpful tool in summarizing posterior topology distributions. Therefore it is
important that the figures are both easy to interpret, and not easily amenable to mistaken inter-
pretations.

Majority consensus trees use multifurcating trees to represent a collection of full splits with
individually high support. Therefore it is important to guard against misinterpreting majority
consensus trees as containing splits that are jointly supported. Such an interpretation would indicate
that the consensus tree is being used to represent a confidence set; this is explicitly not the approach
that has been chosen. Likewise, extended majority consensus trees also represent a collection of full
or partial splits that are individually supported.

Consensus networks can be difficult to interpret. They intentionally represent mutually incom-
patible splits, and some of these splits necessarily have low support (since, otherwise representing
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conflicting splits would not be necessary.) (Figure 5). However, we note that consensus networks
can indeed represent splits that a multiconnected tree cannot.

Majority Consensus: Death by Short Branches The inability of majority consensus tree to
represent uncertainty about attachment location is especially unfortunate for two reasons. First,
any summary method that cannot handle short branches will eventually collapse as a sufficient
number of taxa are added to the analysis. Secondly, breaking up long branches by the addition
of new taxa is desirable to avoid systematic error due to model misspecification and the possible
resulting long branch attraction. However, if the bias of long branch attraction is opposed by
short branch confusion, then researchers may hesitate to add additional taxa, because the majority
consensus would contain fewer branches even though the total amount of data has increased. Thus,
the imperative to improve the estimate would be in conflict with the imperative to make a visually
representable estimate.

“This implies that, as more and more taxa are added to a data set, the number of mutations
supporting each full split on the new taxon set may decrease to the point where very few full splits
are supported. In constrast, partial splits on the new taxon set can correspond to several subdivided
branches by not specifying the location of some taxa.”

Why not just make a probabilistic MAST? Q:You could pick leaves off the tree (or internal
branches off the tree) until (a) the whole tree has probability greater than l or (b) all individual
branches have probability greater than l.

A: Our goal is to avoid picking taxa off of the tree at all. In cases like Figure 6, this would
remove half of the taxa from the tree. This problem would also occur when two clades reciprocally
root each other, but with uncertainty in the root attachment points. In these case, and in many
other cases, the issue isn’t that particular branches are “wandering” or “rogue”, but that we need to
represent uncertainty. Furthermore, see argument in Section ?? that pruning taxa is undesirable.

Leaf Stability and other methods RadCon (Thorley and Page 2000) and Leaf stability indices
(Thorley and Wilkinson 1999). Talk with

Stephen on
this?Criticism of consensus methods See response (to criticism of majority consensus methods in

general) in Mark Holder’s recent article in Sys Bio.
In support for consensus methods, mention the issue about how confidence cubes get smaller in

each dimension as the number of dimensions grows. So, each part of the tree would lose resolution
as more taxa are added in order to remain at some fixed bound (e.g. 95%) for the whole tree.

Median versus confidence interval.
Alternative: median and average distance? (e.g. Susan Holmes)
Future work (?): distances?
Parsimony: strict consensus implies that Σ is closed, and therefore... ?
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A Proofs

A.1 Definitions

• 〈x〉 refers to the set of all leaf-labelled binary trees compatible with x, whatever x is.

• If A is a ordered split, then At represents the same split but with the reverse orientation.

– Therefore
(
At
)t

= A.
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• Â means the unordered version of the ordered split A.

• For some function f on ordered splits, f̂ means the projected version of that function for
unordered splits.

– This only makes sense if f(Ct) = f(C)t

• Σ̌ means the ordered version of a set Σ of unordered splits12:

– For each unordered split α in Σ, Σ̌ contains two splits A and At where Â = Ât = α .

• For a set T of trees, q(T ) refers to the set of quartets common to all the trees.

– For a split A, q(A) means all of the quartets implied by A. q(A) = q(〈A〉).
– For a split set Σ, q(Σ) means

⋃
A∈Σ q(A).

A.2 Basic facts about multiconnected trees

This section contains a number of lemmas that are used in later parts of the proof. Many of them
concern how two splits may be related, given that they are both related to a third split in a certain
way13.

Lemma 74. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A ↓ B and C < B and it
is not the case that A ↓ C, then C < At.

Proof. We consider the 9 possible relationships between C and B that are given in section 4.4.
We first consider that A and C may be related through “<”. We note that since C < B, C1 must

be a strict subset of B1 by the definition of <; since A ↓ B, B1 is a strict subset of A2. Therefore,
C1 must be a strict subset of A2, and cannot intersect A1. This rules out the possibilities C < A
and A < C which require an overlap between C1 and A1. In addition, At < C is ruled out since A2

cannot be a strict subset of C1.
We then consider that A and C may be related through “↓”. The premises explicitly rule out

the possibility that A ↓ C. We may also rule out the possibilities At ↓ C and C ↓ A because these
possibility contradict the requirement that C1 and A2 must intersect; we rule out Ct ↓ A because
C2 contains B2, which is in A2.

Finally, A and C cannot be non-overlapping since C1 is a subset of A2.
Therefore, the only possible relationship between A and C is C < At.

Lemma 75. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A ⇓ B and C < B and it
is not the case that A ⇓ C, then C < At.

Proof. By Lemma 74, either A ↓ C or C < At. We seek to show that if A ↓ C then A ⇓ C. Therefore
suppose that A ↓ C, and let us additionally suppose that A 6⇓ C. Then there exists some D ∈ Σ̌
such that A < D ↓ C. By Lemma 74, then either D ↓ Bt or Bt < Dt. In the first case, we have
A < D ↓ B, which contradicts A ⇓ B. In the second case, we have A < D < B which contradicts
A ↓ B. Since both of these cases are impossible, then we must have A ↓ C =⇒ A ⇓ C.

Lemma 76. If A, B, and D are distinct members of the multiconnected split set Σ̌, and A < B
and A ↓ D and then either

12J:?
13Whole section: possibly replace “A,B,C ∈ Σ̌” with ”A, B, and C, are distinct splits in Σ̌.
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Case 1. D < B, or

Case 2. Dt < B, or

Case 3. B ↓ D, or

Case 4. Bt ↓ D, or

Case 5. B ⊥ D.

In case B ⊥ D, there must be some E such Et ↓ B and E ↓ D. For any such E, we must have
A < E.

Proof. The following cases lead to contradictions, and therefore cannot occur:

• B < D: contradiction. A < B < D =⇒ A < D. This contradicts A ↓ D.

• B < Dt: contradiction. A < B < Dt =⇒ A < Dt. This contradicts A ↓ D.

• D < B: OK. (This is like in Lemma 74, but with the A ↓ C case used instead of disallowed.)

• Dt < B: OK. (Same as above w/ direction of D reversed, which doesn’t matter.)

• B ↓ D: OK. (A < B ↓ D)

• Bt ↓ D: OK. (Both A and Bt point down to D).

• D ↓ B: contradiction. A ↓ D ↓ B =⇒ A ↓ B. This contradicts A < B.

• Dt ↓ B: contradiction. A ↓ Dt ↓ B =⇒ A ↓ B. This contradicts A < B.

• B ⊥ D: OK.

In this case, we must have some E such that E ↓ D and Et ↓ B.

Now, A1 ⊂ B1 from A < B and B1 ⊂ E1 from Et ↓ B. So, A1 ⊂ E1.

Also A ↓ D and E ↓ D, so D1 ∪D2 ⊆ A2 and D1 ∪D2 ⊆ E2, so D1 ∪D2 ⊆ A2 ∩ E2.

The fact that #(A,E) ≥ 2 and A1 ⊆ E1 an A2 ∩ E2 6= ∅ allows only the relationship A < E.

Lemma 77. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A ↓ B and C ↓ B then
either

Case 1: A ↓ C, or
Case 2: C ↓ A, or
Case 3: A < C, or
Case 4: C < A, or
Case 5: C < At.

We begin by noting that A2 and C2 must intersect, since both must contain B1 ∪B2. This rules
out A ⊥ C, At ↓ C , Ct ↓ A, and At < C from the nine possible relationships listed in section 4.4,
leaving the five cases mentioned above.

Lemma 78. Given that Σ is a multiconnected tree and A,B,C,D ∈ Σ̌ and At ↓ C and Bt ↓ C and
A ↓ D and B ↓ D, then either A < B or B < A.
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Proof. By Lemma 77, At ↓ C and Bt ↓ C together imply that one of the following relationships
between A and B must obtain.

• At ↓ B

• Bt ↓ A

• At < Bt (which is the same as B < A)

• Bt < At (which is the same as A < B)

• Bt < A

By the same Lemma, A ↓ D and B ↓ D together imply that A and B must simultaneously have
one of these relationships:

• A ↓ B

• B ↓ A

• A < B

• B < A

• B < At

The only relationships in the second list that are compatible with relationships in the first list are
in fact A < B and B < A. Therefore, one of these most hold.

Lemma 79. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A ⇓ B and C ⇓ B, then
A1 ∩ C1 = ∅ and A1|C1 is implied by either A or C, or both.

Proof. If A1|C1 is implied by any split, then A1 ∩C1 = ∅. Therefore we need only demonstrate the
second claim of the lemma. So, considering the cases from Lemma 77:

Case 1: If A ↓ C then A1|C1 is implied by A since C1 ⊂ A2.
Case 2: If C ↓ A then C1|A1 is implied by C since A1 ⊂ C2.
Case 3: Not possible. If A < C then (A < C and C ↓ B). But this contradicts the premise that

A wanders directly over B.
Case 4: Not possible. If C < A then (C < A and A ↓ B). But this contradicts the premise that

C wanders directly over B.
Case 5: If C < At then C implies C1|A1 since A1 ⊂ C2. Note that by symmetry, A also implies

A1|C1, since C < At can be rewritten as A < Ct.

Lemma 80. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A < B and A < C then
either

Case i:B < C
Case ii: C < B
Case iii: Bt < C
Case iv: Bt ↓ C
Case v: Ct ↓ B.

Proof. Because A1 ⊂ B1 and A1 ⊂ C1, the intersection of B1 and C1 cannot be empty. This rules
out C < Bt, Bt ↓ C, Ct ↓ B, and B ⊥ C from the nine possible relationships listed in section 4.4,
leaving the five cases mentioned above.
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Lemma 81. Given that Σ is a multiconnected tree and A,B,C,D ∈ Σ̌ and A < B < D and
A < C < D then either B < C or C < B.

Proof. Since A < B and A < C, then by Lemma 80, we must have either

• B < C

• C < B

• Bt < C

• Bt ↓ C

• Ct ↓ B

Furthermore, we have Dt < Bt and Dt < Ct, and so we must also have one of

• Bt < Ct (which is the same as C < B)

• Ct < Bt (which is the same as B < C)

• B < Ct

• B ↓ C

• C ↓ B

The only cases that occur in both lists are B < C and C < B.

Lemma 82. The relation <o≡ {(A,B): A ↓ B or A < B} is a strict partial order on partial splits.

Proof. Recall that ↓ and < are themselves strict partial orders on splits (Sections 4.2.4 and 4.2.5).
Since we cannot have either A ↓ A or A < A, we cannot have A <o A and so <o is irreflexive.

We note that A < B rules out B < A because < is a partial order and rules out B ↓ A because
< and ↓ are mutually exclusive. Therefore, A < B rules out B <o A. Likewise, A ↓ B rules out
B ↓ A because ↓ is a partial order and rules out B < A because < and ↓ are mutually exclusive.
Therefore A ↓ B also rules out B <o A. Merging these two results, we see that A <o B rules out
B <o A and so <o is asymmetric.

In order to demonstrate that <o is transitive, we must prove four statements:

1. If A ↓ B and B ↓ C then A <o C.

2. If A < B and B < C then A <o C.

3. If A < B and B ↓ C then A <o C.

4. If A ↓ B and B < C then A <o C.

The first two statements follow from the transitivity of ↓ and <. To demonstrate the third statement
we note that C1 ∪ C2 ⊆ B2 and B2 ⊂ A2. Therefore C1 ∪ C2 ⊂ A2 and so A ↓ C. To prove the
fourth statement, we consider two cases: A ↓ C and A 6↓ C. If A ↓ C then clearly A <o C. If A 6↓ C
then we note that A ↓ Bt and Ct < Bt and A 6↓ Ct; we may then apply Lemma 74 to conclude that
Ct < At. This implies that A < C and so A <o C.

We now note that the statement “A <o B and B <o C” is equivalent to (A < B or A ↓
B) and (B < C or B ↓ C). This in turn is equivalent to (A ↓ B and B ↓ C) or (A ↓ B and B <
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C) or (A < B and B ↓ C) or (A < B and B < C). Because each of the four terms in this disjunc-
tion implies A <o C, we may conclude that A <o B and B <o C implies A <o C and so <o is
transitive.

Because <o is irreflexive, asymmetric, and transitive, it is a strict partial order.

The following lemma shows that all the branches that are adjacent to the right end of A are
also adjacent to each other.

Lemma 83. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A� B and A� C then
Bt � C.

Proof. Because A < B and A < C, we may reduce the possible relationship of B and C to the
cases listed in Lemma 80. However, since A� B and A� C, we may rule out B < C and C < B.
This leaves only Bt < C, Bt ↓ C, and Ct ↓ B. Since the last two cases are symmetrical, we assume
that Bt ↓ C by way of contradiction. Since Bt does not directly wander, there must be some other
split D ∈ Σ̌ such that Bt < D and D ↓ C. Now, we cannot have D ↓ A, since this would imply
Bt ↓ A, which contradicts a premise. Therefore, D < At by Lemma 74. However, this implies that
Bt < D < At, which contradicts A � B. Therefore, Bt ↓ C leads to a contradiction and cannot
occur; Ct ↓ B is ruled out by symmetry. This leaves only Bt < C.

Since A� B and A� C, this demonstrates that Bt and Ct do not directly wander in Σ.
Now suppose that there is some D ∈ Σ such that Bt < D < C. Since D < C and A < C,

Lemma 80 indicates that A and D must have one of the relationships A < D, D < A, D < At,
D ↓ A, or A ↓ D. Since Dt < B and A < B, we must also have one of A < Dt, D < At, Dt < At,
Dt ↓ A, or A ↓ Dt. The cases that overlap are A < D, D < At, and A ↓ D. We rule out A < D
because D < C, and A < D < C contradicts A � C. We rule out D < At because Dt < B and
A < Dt < B contradicts A � B. Finally, we consider the possibility A ↓ D. A ↓ D would require
some E ∈ Σ̌ such that A < E ↓ D. Since E 6↓ B and Bt < C, Lemma 74 implies that Bt < Et. But
this would imply that A < E < B, which violates the premises. Therefore, there can be no D such
that Bt < D < C, and so we may conclude that Bt � C.

The following lemma demonstrates that collections of adjacent branches with the <2 relationship
must form a linear structure that cannot branch.

Lemma 84. Given that Σ is a multiconnected tree and A,B ∈ Σ̌ and A <2 B then there cannot be
an ordered split C such that A < C and Ct < B.

Proof. If A < C then C2 ⊂ A2. If Ct < B then C2 ⊂ B1. Therefore if A < C and Ct < B then
A2 ∩ B1 is not empty. But this contradicts the premise A <2 B, which requires that A2 ∩ B1 is
empty.

Lemma 85. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A <2 B and A ↓ C then
either B ↓ C or B ⊥ C. If B ⊥ C then there exists D ∈ Σ such that A < Dt, D ↓ B, and Dt ↓ C.

Proof. If A ↓ C then C1∪C2 ⊂ A2. Since A <2 B, we also have that A2∩B1 is empty. Since C1 and
C2 are contained entirely within A2, this means that C1 and C2 do not intersect B1. Now since B
and C are both part of a multiconnected tree, they must have a valid relationship from section 4.4.
The only relationships that satisfy this condition are B ↓ C and B ⊥ C. Now, if B ⊥ C in Σ, then
there must exist some D ∈ Σ̌ such that D ↓ B and Dt ↓ C. Since B1 ∪B2 ⊆ D2 and B1 intersects
A1 and B2 intersects A2, then D2 intersects A1 and A2. Since C1 ∪ C2 ⊆ D1 and C1 ∪ C2 ⊆ A2,
D1 intersects A2. Therefore #(A,D) is at least 3, and the only valid relationship with this form is
A < Dt.

58



Lemma 86. Given that Σ is a multiconnected tree and A,B ∈ Σ̌ and A <2 B then there is no split
C ∈ Σ such that A ⇓ C.

Proof. Suppose there was a split C ∈ Σ such that A ⇓ C. Then by Lemma 85, either B ↓ C or
B ⊥ C. In the first case, A < B ↓ C, and so it is not the case that A ⇓ C in Σ. In the second case,
Lemma 85 indicates that there must exist a D ∈ Σ such that A < Dt ↓ C, and so it is not the case
that A ⇓ C in Σ. Since both possibility lead to a contradiction, the lemma is proved.

Lemma 87. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and B <2 A and C <2 A then
either B <2 C or C <2 B.

Proof. We first derive three points about B and C. The premises imply that A2 ⊂ B2 and A2 ⊂ C2

because B < A and C < A. Therefore B2 ∩ C2 6= ∅; this is the first point.
Now, B2 ∩ A1 = ∅ because B <2 A and C1 ⊂ A1 because C < A. Therefore B2 ∩ C1 = ∅; this

is the second point.
Now, by symmetry between B and C, we may conclude that C2∩B1 = ∅; this is the third point.
We consider the 9 possible relationships between B and C that are given in section 4.4.

Case 1. B < C - We do not note any contraditions in this case.

Case 2. C < B - We do not note any contraditions in this case.

Case 3. Bt < C - This case contradicts points 1, 2 and 3.

Case 4. C < Bt - This case contradicts points 2, and 3.

Case 5. B ↓ C - This case contradicts point 2.

Case 6. Bt ↓ C - This case contradicts points 1 and 3.

Case 7. C ↓ B - This case contradicts point 3.

Case 8. Ct ↓ B - This case contradicts points 1 and 2.

Case 9. C ⊥ B - This case contradicts point 1.

Since B and C have a legal relationship in Σ, then this relationship must be either B < C or C < B.
Furthermore, since B2 ∩ C1 = ∅ (point 2) and C2 ∩ B1 = ∅ (point 3) we the relationship must be
either B <2 C or C <2 B.

Lemma 88. If Σ is a multiconnected tree containing A, B and C, and A <2 B and A < C < B,
then A <2 C <2 B.

Proof. This can be proved by demonstrating that A2 ∩ C1 = ∅ and C2 ∩ B1 = ∅. Now, A <2 B
implies that A2 ∩ B1 = ∅. Since C1 ⊂ B1, we have A2 ∩ C1 = ∅. Because C2 ⊂ A1 we also have
that C2 ∩B1 = ∅ and we are done.

Lemma 89. Given that A, B, C, and D are all distinct members of a multiconnected split set Σ,
then if A < B and A < C and B < D and C < D then either B < C or C < B.

Proof. By Lemma 80, A < B and A < C implies that exactly one of the following must be true:

1. B < C
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2. C < B

3. Bt < C

4. Bt ↓ C

5. Ct ↓ B

Because Dt < Bt and Dt < Ct, the same lemma also implies that exactly one of the following must
be true:

1. Bt < Ct, which is the same as C < B

2. Ct < Bt, which is the same as B < C

3. B < Ct

4. B ↓ Ct

5. C ↓ Bt

Now, the cases B < C and C < B occur in both groups; no other cases in the first group are
compatible with any cases in the second group. Therefore, either B < C or C < B must be
true.

Lemma 90. Given that A, B, C, and D are all distinct members of a multiconnected split set Σ,
then if B < A and C ↓ A and B < D < Ct then either B < D < A or C < Dt ↓ A.

Proof. By Lemma 76, C < Dt and C ↓ A implies that exactly one of the following must be true:

1. A < Dt

2. At < Dt

3. Dt ↓ A

4. D ↓ A

5. A ⊥ D

Furthermore, by Lemma 80, B < A and B < C imply that exactly one of the following must be
true:

1. A < D

2. D < A

3. At < D

4. At ↓ D

5. Dt ↓ A

The only cases that are occur in both groups are D < A and Dt ↓ A.

Lemma 91. Given that A, B, and C are all distinct members of a multiconnected split set Σ, then
if B ⇓ A and B ↓ C and C ↓ A then B ⇓ C.
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Proof. Suppose there were some D ∈ Σ such that B < D ↓ C. Then B < D ↓ C ↓ A, which
contradicts B ⇓ A. Thus, no such D exists, and B ⇓ C.

Lemma 92. Given that A, B, C, and D are all distinct members of a multiconnected split set Σ,
then if B ⇓ A and B ⇓ C and C < D ↓ A then B ⇓ D.

Proof. Now, B ↓ C and C < D implies either B ↓ D or B < D by 74. If B < D then B < D ↓ A,
which contradicts B ⇓ A. Therefore, it must be B ↓ D. By Lemma91, B ⇓ D.

Lemma 93. Given that A, B, C, and D are all distinct members of a multiconnected split set Σ,
then if A ↓ B ↓ C and A < D ↓ C then either A < D ↓ B ↓ C or A ↓ B < D ↓ C.

Proof. By Lemma 76 A ↓ B and A < D together imply that B < D, Bt < D, D ↓ B, Dt ↓ B,
or B ⊥ D. By Lemma 77, B ↓ C and D ↓ C together imply B ↓ D, D ↓ B, B < D, D < B, or
B < Dt. The only possibilities on both lists are B < D and D ↓ B.

Lemma 94. Given that A, B, and C, all distinct members of a multiconnected split set Σ, then if
A ⇓ B and B ⇓ C then A ⇓ C.

Proof. A ↓ C follows from the transitive property of ↓. By Lemma 93, if there is another split
D ∈ Σ such that A < D ↓ C then we must have either A < D ↓ B ↓ C (which contradicts A ⇓ B)
or A ↓ B < D ↓ C (which contradicts B ⇓ C). Therefore there is no such split, and A ⇓ C.

A.3 Proof of compatibility

In this section, we show that a collection of partial splits that satisfies the criteria for being a
multiconnected tree is also compatible.

Definition 95. Given that Σ is a multiconnected tree and A and B are ordered splits in Σ̌, then
we define

Λ(A,B,Σ) ≡ {C ∈ Σ̌ : A ↓ C and C < B}.

Definition 96. Given that Σ is a multiconnected tree and A and B are ordered splits in Σ̌, then
we define

Θ(A,B,Σ) ≡ {C ∈ Σ̌ : A ↓ C and C ↓ B}.

Definition 97. Given that Σ is a multiconnected tree and A and B are ordered splits in Σ̌, we
define

Γ(A,B,Σ) ≡ Λ(A,B,Σ) ∪Θ(A,B,Σ).

This set Γ(A,B,Σ) can be thought of as the set of splits in Σ that need to be modified in order
to attach A to the right side of B. We note that the splits are undered instead of unordered.

When a multiconnected tree Σ̌ has splits A and B such that A ↓ B, then we seek to show that
a new multiconnected tree can be found that results from resolving the split A to a specific side of
B, so that it no longer wanders over B. We define a function RA,B(·) to make a correspondence
between splits in the original tree, and splits in the resolved tree.
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Definition 98. For any ordered splits A and B we define a function RA,B(·) on ordered splits such
that for any ordered split C

RA,B(C) =


B1|A1 ∪B2 if B1|A1 ∪B2 =⇒ C

A1 ∪B2|B1 if A1 ∪B2|B1 =⇒ C

C otherwise

This function is intended to resolve the branch B by increasing its support B1 ∪B2 so that A is on
the right side of RA,B(B). We note a few important facts about this function14.

1. RA,B(B) = B1|A1 +B2 and RA,B(Bt) = A1 +B2|B1 = RA,B(B)t.

2. R(R(C)) = R(C)

3. R(C) =⇒ C for all C.

Since the only change that RA,B(C) can make is to add elements to C1 or C2, R(C) must
imply C.

4. R(C) 6= C if and only if R(C) = R(B) or R(C) = R(B)t.
Or equivalently, R(C) = C if and only if R(B) does not imply C and R(C)t does not imply
C.

The forward direction can be demonstrated by noting that R(C) 6= C rules out the third case,
so that one of R(C) = R(B) or R(C) = R(B)t must be true. The reverse direction can be
demonstrated by noting that R(B) =⇒ B and so R̂(B) cannot be in Σ and R(C) cannot
equal C. The equivalence holds because R(C) = R(B) iff R(B) =⇒ C and R(C) = R(B)t

iff R(B)t =⇒ C.
Fixme: the reverse direction is not true in general... just on Σ if A ↓ B is in Σ.

5. R−1(X) = X unless X = R(B) or X = R(B)t.

We seek to show that if the condition is false, then R(X) = X and no other Y 6= X has
R(Y ) = X. Assuming X 6= R(B) and X 6= R(B)t then by point 4, X = R(X). Also,
for any Y , if R(Y ) = R(B) or R(Y ) = R(B)t then R(Y ) 6= R(X) since X 6= R(B) and
X 6= R(B)t. However, if R(Y ) 6= R(B) and R(Y ) 6= R(B)t, then R(Y ) = Y , so if Y 6= X
then R(Y ) 6= R(X).

6. R(Ct) = R(C)t.

To see this, consider that R(Bt) = R(B)t. For any split E that is not B, but is implied
by RA,B(B) or RA,B(B)t, Et is implied by RA,B(B)t, so that RA,B(E) = RA,B(B) and
RA,B(Et) = RA,B(B)t and R(Et) = R(E)t. For any other split C, R(C)t = Ct = R(C)t.

Lemma 99. Given that Σ is a multiconnected tree and A,B,C ∈ Σ̌ and A ↓ B and RA,B(C) =
RA,B(B) then either B = C or C <2 B. If RA,B(C) = RA,B(B)t then either B = Ct or Ct <2 B.

Proof. Clearly, if C = B then RA,B(C) = RA,B(B). However, supposing that C 6= B, then
RA,B(B) =⇒ C and C1 ⊆ B1 and C2 ⊆ B2 + A1. The only legal relationships between B and C
that satisfy C1 ⊆ B1 are C < B and Bt ↓ C. Now, if we assume that Bt ↓ C then A ↓ C because
A ↓ Bt. Therefore C2 and A1 do not intersect. However, if this is the case, then C2 ⊆ B2 + A1

reduces to C2 ⊆ B2, and this contradicts our assumption. Therefore C < B. Furthermore, if
14Am I going to define “+” as being the union of disjoint sets, or am I just going to use ∪?
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RA,B(B) =⇒ C, then C2 cannot intersect B1 since it is a subset of B2 + A1, which does not
interset B1. Therefore C2 ∩B1 = ∅ and C <2 B.

Finally, if RA,B(C) = RA,B(B)t then RA,B(Ct) = RA,B(B) and we may apply the first part of
the lemma to Ct instead of C.

Theorem 100. Given that Σ is a multiconnected tree and A ⇓ B in Σ and Γ(A,B,Σ) is empty
then

Claim 1: The split set R̂A,B(Σ) contains all splits in Σ except splits that are implied by R̂A,B(B).
In addition to these, it contains only the split R̂A,B(B).

Claim 2: The split set R̂A,B(Σ) is a multiconnected tree.
Claim 3: If R−1(R(B)) contains more than one element then there is an ordered split E ∈ Σ̌

such that R−1(R(B)) = {E,B} and R−1(R(B)t) = {Et, Bt}, where E <2 B and E � B and
E2 = B2 +A1 so that R(B) = B1|E2.

Claim 4: For any ordered splits C and D in Σ̌.

• If C < D then either R(C) < R(D) or R(C) = R(D).

• If C ↓ D then R(C) ↓ R(D) unless R(D) 6= D and (C = A or C < A or C < B).

1. If D = B and (C = A or C < A) then R(C) < R(D)t.
2. If D = Bt and (C = A or C < A) then R(C) < R(D).
3. If D < B and C < B then R(C) < R(D)

4. If Dt < B and C < B then R(C) < R(D)t

• If C ⊥ D then R(C) ⊥ R(D) unless (R(D) 6= D and At ↓ C) or (R(C) 6= C and At ↓ D)

1. If R(D) 6= D and At ↓ C then R(D) ↓ R(C) when R(D) = R(B) and R(D)t ↓ R(C)
when R(D) = R(B)t.

2. If R(C) 6= C and At ↓ D then R(C) ↓ R(D) when R(C) = R(B) and R(C)t ↓ R(D)
when R(C) = R(B)t.

Proof. In this proof, for brevity, we will suppress the subscripts on the function RA,B and write R.
[claim 1] Clearly, every split in R̂(Σ) is the image under R̂ of some split in Σ. For any split

C ∈ Σ that is not implied by R̂(B), we have R̂(C) = C. Furthermore, for all other splits C ∈ Σ,
we have R̂(C) = R̂(B). This means that splits implied by R̂(B) are not in R̂(Σ), but are replaced
with R̂(B), which is present. Thus, claim 1 is demonstrated.

[claim 2] In order to show that R̂(Σ) is a multiconnected tree, we need to show that all pairs of
splits in R̂(Σ) have a valid relationship. For any two splits C and D, R̂(C) and R̂(D) have a valid
relationship if R̂ leaves C and D unchanged. If both splits have been changed, then R̂(C) = R̂(D)
because both equal R̂(B), and so the splits are no longer distinct. This leaves case in which one of
C or D is altered by R̂, but the other one is not. Therefore, we consider ordered splits C ∈ Σ̌ such
that R(C) = C and seek to show that R(C) and R(B) maintain a valid relationship. Finally, we
seek to show that for any two elements C ⊥ D in Σ̌ where R(C) ⊥ R(D), there remains an element
X in R(Σ̌) such that X ↓ R(C) and X ↓ R(D).

First we note that A < R(Bt) because A1 ⊆ A1 + B2 and B1 ⊂ A2 and so A and R(B) have a
legal relationship in Σ′.

We now show that, for any ordered split C ∈ Σ that is not A or At or B or Bt, either R̂(B) =⇒
Ĉ, or R(B) and C have a legal relationship. We do this by considering the cases for how R(B) may
relate to C.
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1. C < B - We can conclude that A 6↓ C from the fact that Γ(A,B,Σ) is empty. Therefore, we
can conclude C < At by Lemma 74. Therefore A1 ⊂ C2 and so B2 +A1 ⊆ C2. However, there
are two cases:

Case i: B2 +A1 ⊂ C2 - If the subset is a proper subset then C < R(B).

Case ii: B2 +A1 = C2 - If the subset is not a proper subset then R(B) =⇒ C since C1 ⊂ B1;
therefore R(C) = R(B). We note that C1 ⊂ B1 and C2 = B2 +A1 and since R(B) is a split.
This implies that C2∩B1 must be empty. Since C1 ⊂ B1 and B2 ⊂ C2, and C2∩B1 is empty,
we must have C <2 B in this case.

2. B < C - If B1|B2 < C1|C2 then B1|B2 + A1 < C1|C2 by the definition of “<”. To determine
the relationship of C to A, we can conclude that either A ↓ C or A < C by Lemma 74.

3. Ct < B - Case 1 applies here by reversing C.

4. B < Ct - Case 2 applies here by reversing C.

5. C ↓ B - Lemma 77 applies. Therefore we consider the 5 cases for how C may relate to A:

Case i: A ↓ C - Cannot occur because Γ(A,B,Σ) is empty.

Case ii: C ↓ A - Since C ↓ A, then C2 contains A1. Also C ↓ A ↓ B and so C ↓ B. Since
C ↓ B1|B2 and A1 ⊂ C2, then C ↓ B1|A1 +B2.

Case iii: A < C - Cannot occur because Γ(A,B,Σ) is empty.

Case iv: C < A - We have C < A ↓ B and so C ↓ B. However, after refining B to B1|B2+A1,
we still have A1|A2 < A1 +B2|B1. Therefore, C < A < R(B)t and C < R(B)t.

Case v: A < Ct - Because A1 ⊂ C2, then C ↓ B1|B2 +A1 if C ↓ B.

6. Ct ↓ B - Case 5 applies here by reversing C.

7. B ↓ C - If B1|B2 ↓ C, then B1|A1 +B2 ↓ C by the definition of “↓”. We note that A ↓ C.

8. Bt ↓ C - If B2|B1 ↓ C, then B2 +A1|B1 ↓ C by the definition of “↓”. We note that A ↓ C.

9. B ⊥ C - There must be some D ∈ Σ̌ such that D ↓ B and Dt ↓ C. We may therefore apply
case 5 to D ↓ B, considering the three valid subcases:

Case i: If D ↓ A (case 5.ii) then D ↓ R(B) and therefore (i) C ⊥ R(B) and (ii) D ↓ R(B)
while Dt ↓ C. Also, A ⊥ C.

Case ii: If D < A (case 5.iv) then D < R(B)t. Since R(B) < Dt ↓ C we have R(B) ↓ C.
Also, At < Dt ↓ C and so At ↓ C.

Case iii: If A < Dt (case 5.v) then D ↓ R(B) and therefore (i) C ⊥ R(B) and (ii) D ↓ R(B)
while Dt ↓ C. Also A < Dt ↓ C and so A ↓ C.

Finally, we seek to show that for any splits C, D, and E in Σ , if E ↓ C and Et ↓ D and R(C)
and R(D) are non-overlapping then R(E) ↓ R(C) and R(E) ↓ R(D). Now we must have either
R(E) ↓ R(C) or R(E) < R(C) or R(E) < R(C)t, and we must have either R(E)t ↓ R(D) or
R(E)t < R(D) or R(E)t < R(D)t. Now if R(E) < R(C) then R(C)t < R(E)t. Considering each
of the cases for how E and D relate leads to R(C)t < R(E)t ↓ R(D) or R(C)t < R(E)t < R(D)
or R(C)t < R(E) < R(D)t. Each of these cases contradicts the premise that R(C) and R(D)
are non-overlapping. Likewise considering R(E) < R(C)t leads to the same conclusion. Therefore,
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the only possibility remaining is R(E) ↓ R(C). But, but symmetry, we must have R(E)t ↓ R(D).
Therefore claim 2 is demonstrated.

[claim 3] We also note that the only case in which a split C 6= B has R(C) = R(B) is in case
1.ii, and in this case C2 = B2 + A1 and C <2 B. Therefore for any C ∈ R−1(R(B)) where C 6= B,
C2 = B2 + A1 and C <2 B. The only other case in which a split C has R̂(C) = R̂(B) is case 3, in
which the results of case 1.ii apply to Ct. Therefore, without loss of generality, when considering
some split C such that Ĉ 6= B̂ but R̂(C) = R̂(B), we can restrict ourselves to the case where C < B
and R(C) = R(B).

Now imagine that there are two distinct splits C and D besides B such that C < B and D < B
and R(C) = R(D) = R(B). In that case, both C2 = B2 +A1 and D2 = B2 +A1 so that C2 = D2.
However, none of the possible relationships between C and D in section 4.4 would allow C2 = D2.
Therefore, at most one split C besides B has R(C) = R(B).

Now, imagine that R−1(R(B)) = {C,B} but there is an ordered split D ∈ Σ̌ such that C <
D < B. Then D1 ⊂ B1 because D < B and D2 ⊂ C2 because C < D. But, then D1 ⊂ R(B)1 and
D2 ⊂ R(B)2 because C2 = R(B)2, and so R(B) =⇒ D. However, this contradicts the fact that at
most one split C in Σ̌ besides B can be implied by R(B), and so we may conclude that such a split
D does not exist in Σ̌. Furthermore, such a split C cannot directly wander over any split in Σ̌ by
Lemma 86. Therefore, if there is a split C in Σ̌ such that C 6= B and R(B) =⇒ C then C � B,
and we have demonstrated the second claim.

[claim 4i] Consider ordered splits C,D ∈ Σ̌. Now if C < D then if neither C or D are
changed by R(·) then R(C) < R(D), and claim 4.i holds. Also, if C and D are both changed, then
R(C) = R(D) = R(B) or R(C) = R(D) = R(B)t by claim 3, and claim 4.i holds. Finally, suppose
only one of C or D is changed. Let us suppose that it is C that is changed, but that R(D) = D.
Now, if C = B or C = Bt, then cases 1-4 of claim 1 show that C < D implies that R(C) < R(D),
since R(C) 6= R(D). However, if C does not equal B or Bt then by claim 3, there is exactly one
other ordered split E ∈ Σ̌ such that R(E) = R(B), and for this split E <2 B; C may equal E or
Et. Now suppose C = E so that E < D, and let us consider the relationship of D to B. By claim
3, we may not have D < B. By Lemma 84 we may not have Dt < B. Now if Bt ↓ D, we must have
either Et ↓ D or E ⊥ D by Lemma 85 but this contradicts E < D. By Lemma 80 this leaves only
the possibilities B < D and Dt ↓ B. Now, we now that D2 ⊂ E2 because E < D. So if B < D
then B1 ⊂ D1 too, and so R(E) = B1|E2 < D. Alternatively, if Dt ↓ B, then B1 ⊂ D1 and so
again R(E) = B1|E2 < D. Therefore if E < D, then R(E) < D. Finally, let us consider whether
R(E)t < D whenever Et < D. We must show that that E2 ⊂ D1 and D2 ⊂ B1. Now Et < D
directly implies that E2 ⊂ D1 and it implies that D2 ⊂ E1. Since E < B we have E1 ⊂ B1, so
that D2 ⊂ E1 ⊂ B1. Therefore for any C ∈ Σ̌, if C < D, then R(C) < R(D) when R(C) = R(B)
and R(D) = D. In order to consider the case when C < D and R(C) = C and R(D) 6= D, we let
C ′ = Dt and D′ = Ct and apply the previous case to claim that when C ′ < D′ and R(C ′) 6= C ′ and
R(D′) = D′ then R(C ′) < R(D′). Then Dt < Ct implies that R(D)t < R(C)t and we are done.

[claim 4.ii] Consider splits C,D ∈ Σ̌ where C ↓ D. Clearly, if R(C) = C and R(D) = D then
R(C) ↓ R(D). Also, C and D cannot both be changed by R(·) according to claim 3. Therefore, we
must consider the two cases R(C) 6= C ∧ R(D) = D and R(C) = C ∧ R(D) 6= D. We note that
if C ↓ D then R(C) ↓ D, since R(C) =⇒ C. So, C ↓ D implies that R(C) ↓ R(D) in this case.
We therefore consider the final case R(C) = C ∧ R(D) 6= D. Now, we must have either D = B or
D = Bt or D = E or D = Et for some split E such that E <2 B. If D = B then if C = A then
C < R(D)t. Likewise if C 6= A but C < A then case 5.iv implies that C < R(D)t. However, case 5
implies that if C 6= A and C 6< A then C ↓ R(D). By applying this result to Dt = B we find that
C ↓ R(D) unless C = A or C < A, and in this case R(C) < R(D).
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Now if D = E, then either C ↓ B or C 6↓ B. If C 6↓ B then C < B by Lemma 74, and
C1 ⊂ B1. Additionally, E2 ⊂ C2 because C ↓ E and so we have C < B1|E2. Since R(C) = C and
R(D) = R(B) = B1|E2, in this case we have R(C) < R(D). However, if C ↓ B then we begin
by noting that E1 ∪ E2 ⊂ C2. Since E2 = B2 + A1, we have B2 ∪ A1 ⊂ C2. Since C ↓ B, we
also have B1 ∪ B2 ⊂ C2. Therefore B1 ∪ B2 ∪ A2 ⊂ C2 and C ↓ R(B). Therefore, R(C) ↓ R(D).
By applying this result to Dt = E we find that in this case C ↓ R(D) unless C < B, in which
case R(C) < R(D)t. To express this in the terms of claim 4, we note that D = E is equivalent to
R(D) = R(B) and D < B; D = Et is equivalent to R(D) = R(B) and Dt < B. Therefore claim
4.2 is demonstrated.

[claim 4.iii] We now consider splits C and D where C ⊥ D. Now, if R(C) = C and R(D) = D
then R(C) ⊥ R(D) in Σ by claim 2. The case R(C) 6= C and R(D) 6= D cannot occur, since
R(C) and R(D) would have to be R(B) or R(B)t and would therefore have overlapping taxon sets.
Therefore, suppose that R(C) = C and R(D) 6= D. Now by case 9 of claim 2, R(C) ⊥ R(D) unless
At ↓ C, in which case R(D) ↓ C if R(D) = R(B) and R(D)t ↓ C if R(D) = R(B)t. The second
part of claim 4.iii follows by the symmetry of C and D.

Theorem 101. Given that A ⇓ B in Σ so that R̂A,B(Σ) is a multiconnected tree, then if X ⇓ Y in
R̂A,B(Σ) then there exists C,D ∈ Σ̌ such that RA,B(C) = X and RA,B(D) = Y and C ⇓ D in Σ.
This means that for any C,D ∈ Σ where C ⇓ D, RA,B(C) ⇓ RA,B(D) unless RA,B(C) 6= C, and in
this case, the other split E such that R(E) = R(B) has R(E) ⇓ R(D).

Hmm.. should I add that C ⇓ D implies R(C) ⇓ R(D) unless R(C) = R(B)?

Proof. In this proof, for brevity, we will suppress the subscripts on the function RA,B and write R.
We first consider any elements C ∈ R−1(X) and D ∈ R−1(Y ) must relate to each other given

that X ⇓ Y . Since X ↓ Y then by claim 4 of theorem 100, we must have either C ↓ D or C ⊥ D in
Σ. If C ⊥ D but R(C) ↓ R(D) then At ↓ D and R(D) = D and R(C) = R(B). Also A < R(B)t

so R(B) < At. So, R(B) < At ↓ D. Now X = R(B) and Y = D so we have X < At ↓ Y ; this
contradicts the assumption that X ⇓ Y , ruling out the possibility C ⊥ D. Thus if X ⇓ Y then
C ↓ D for any C ∈ R−1(X) and D ∈ R−1(Y ).

We now seek to find specific ordered splits C ∈ R−1(X) and D ∈ R−1(Y ) such that C ⇓ D. In
order to do this, we first construct a specific split C ∈ R−1(X) such that no other split E ∈ R−1(X)
has C < E. If R−1(X) contains only one split then we set C equal to this split, and the condition on
C is trivially satisfied since there is no other split E ∈ R−1(X). By claim 3 of theorem 100, then if
R−1(X) contains more than one split, then R−1(X) must equal {F,B} or {F t, Bt} for some F ∈ Σ̌
such that F �2 B. Thus, we may simply choose the right-most of the two splits in the set. In the
first case, we select C = B; all other elements of R−1(X) are to the left of B since F �2 B. In the
second case, we select C = F t; all other elements of R−1(X) are to the left of F t since Bt �2 F

t.
Thus we have demonstrated by construction such a C exists.

Now, using this specific C, suppose that there exists a split E ∈ Σ̌ such that C < E ↓ D in
Σ. Because of the way we have constructed C, we can rule out the possibility that R(C) = R(E).
Additionally, we cannot have R(E) = R(D) because we this is not possible if E ↓ D. Therefore,
R(C), R(E), and R(D) are all distinct. Now, if C < E and R(C) 6= R(E) then R(C) < R(E)
by claim 4 of theorem 100. Also, if E ↓ D then either R(E) < R(D) or R(E) < R(D)t or
R(E) ↓ R(D) by claim 4 theorem 100. However, given that R(C) < R(E), the first two possibilities
imply that X < Y or X < Y t which contradict the premises. Therefore, if C < E ↓ D, then
R(C) < R(E) ↓ R(D). Therefore, there exists a split F in R(Σ̌) such that X < F ↓ Y . Taking the
contrapositive of this, we see that if there does not exist a split F in R(Σ̌) such that X < F ↓ Y ,
then there does not exist a split E in Σ̌ such that C < E ↓ D. Therefore, if X ⇓ Y in Σ′, then
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C ⇓ D in Σ. Therefore, if X ⇓ Y in R(Σ̌) there exists C and D in Σ̌ such that R(C) = X and
R(D) = Y and C ⇓ D in Σ.

Hmm... if we simply seek a function that increases with R(·) then |q(·)| would be one. But (i)
this is different than decreasing (ii) to a known bound that implies a multifurcating tree.

Definition 102. We define the set W (Σ) on a multiconnected tree Σ as the set

W (Σ) ≡
{

(A,B) ∈ Σ̌× Σ̌ : A ⇓ B in Σ
}

We refer to this as the set of wandering pairs.

Lemma 103. If A ⇓ B in Σ so that R̂A,B(Σ) is a multiconnected tree, then |W (Σ)| >
∣∣∣W (R̂A,B(Σ))

∣∣∣.
Proof. In this proof, we will suppress the subscripts on the function RA,B for brevity and just write
R.

We define the function R×R : Σ̌× Σ̌→ R(Σ̌)×R(Σ̌) as taking any pair of ordered splits (C,D)
to its image (R(C), R(D)). We note that each point y in R(Σ̌) × R(Σ̌) is associated with a set of
points [R×R]−1 (y) in Σ̌ × Σ̌; furthermore, these subsets are non-overlapping and cover Σ̌ × Σ̌.
Therefore we can decompose W (Σ) into partitions of the form [R×R]−1 (y).

Now, the function R×R maps a number of partitions in W (Σ) to W (R̂(Σ)), whereas some fall
outside of W (R̂(Σ)). Now for each pair y in W (R̂(Σ)), there must be some point in [R×R]−1 (y)
that is also inW (Σ). Therefore, the number of partitions inW (Σ) that map toW (R̂(Σ)) must be at
least

∣∣∣W (R̂(Σ))
∣∣∣. Furthermore, the pair (A,B) is present in W (Σ), but [R×R] (A,B) = (A,R(B))

and (A,R(B)) is not a member of W (R̂(Σ)) since A < R(B)t. Therefore, in addition to the
partitions that map to

∣∣∣W (R̂(Σ))
∣∣∣, at least one more is present inW (Σ). We may therefore conclude

that |W (Σ)| ≥
∣∣∣W (R̂A,B(Σ))

∣∣∣+ 1, which concludes the proof.

Lemma 104. Given that Σ is a multiconnected tree containing the distinct ordered splits A, B, and
C and that A ↓ B and A ↓ C then for any ordered split D ∈ Σ̌

• RA,B(B) =⇒ D and RA,C(C) =⇒ D cannot both be true.

• RA,B(B) =⇒ D and RA,C(C)t =⇒ D cannot both be true.

Proof. We first assume that RA,B(B) =⇒ D and RA,C(C) =⇒ D for some ordered split D by
way of contradiction. We note that D <2 B and D <2 C by Lemma 99. Therefore, B2 ⊂ D2 and
C2 ⊂ D2. Secondly, by the assumption we also have D2 ⊆ B2 + A1 and D2 ⊆ C2 + A1. Now,
since A ↓ B, we know that A1 and B2 are disjoint, as are A1 and C2. Therefore B2 = D2 ∩ AC .
But also C2 = D2 ∩ AC , and so B2 = C2. This contradicts the premise that B and C have a legal
relationship in Σ. Therefore, there is no split D such that RA,B(B) =⇒ D and RAC(C) =⇒ C.

We now assume that RA,B(B) =⇒ D and RA,C(C)t =⇒ D by way of contradiction. This
implies that D1 ⊆ B1 and D1 ⊆ C2 + A1 and so D1 ⊆ B1 ∩ (C2 + A1). It also implies that
D2 ⊆ B2 + A1 and D2 ⊆ C1 and so D2 ⊆ (B2 + A1) ∩ C1. Since A1 is disjoint from B and C, this
implies that D1 ⊆ B1 ∩ C2 and D2 ⊆ B2 ∩ C1. But this contradicts the premise that D has a legal
relationship with B.

Should
we write
UA,Φ,Σ?
That is,
should we
include the
Σ?

Definition 105. Given that Σ is a multiconnected tree containing ordered splits A and B and
A ⇓ B in Σ, and given that Φ is a subset of Σ such that A wanders over every split in Φ, then we
define the function UA,Φ with range Σ̌ such that for any ordered split D ∈ Σ̌:
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UA,Φ(D) ≡


RA,C(C) if [∃C ∈ Φ] RA,C(C) =⇒ D

RA,C(C)t if [∃C ∈ Φ] RA,C(C)t =⇒ Dt

D otherwise

By Lemma 104, the different cases are mutually exclusive.

Lemma 106. Given that Σ is a multiconnected tree containing ordered splits A and B and A ⇓ B
in Σ, and given that Φ is a subset of Σ such that A wanders over every split in Φ, then if {Ci}ni=1

is any ordering of splits in Φ then

UA,Φ = RA,C1 ◦RA,C2 ◦ . . . ◦RA,Cn

Proof. We examine each case in the definition of UA,Φ to show that RA,C1 ◦RA,C2 ◦ . . .◦RA,Cn yields
the same result. First, for any ordered split D, if there is no split C ∈ Φ such that RA,C(C) =⇒ D
or RA,C(C)t =⇒ D then RA,Ci(D) = D for all i and so UA,Φ(D) = RA,C1 ◦RA,C2 ◦ . . .◦RA,Cn(D) =
D.

Second, let us consider the case where there exists some Ci ∈ Φ such that RA,Ci(Ci) =⇒ D or
RA,Ci(C)t =⇒ D. We may write:

RA,C1 ◦RA,C2 ◦ . . . ◦RA,Cn(D) = RA,C1 ◦RA,C2 ◦RA,Ci−1(RA,Ci(RA,Ci+1 . . . ◦RA,Cn(D))).

Now, by Lemma 104, for any Cj ∈ Φ such that i 6= j, RA,Cj (D) = D, and so

RA,C1 ◦RA,C2 ◦ . . . ◦RA,Cn(D) = RA,C1 ◦RA,C2 ◦RA,Ci−1(RA,Ci(D)).

Furthermore, we cannot haveRA,Cj (Cj) =⇒ RA,Ci(Ci) because this would require thatRA,Cj (Cj) =⇒
Ci and RA,Ci(Ci) =⇒ Ci; likewise we cannot have RA,Cj (Cj) =⇒ RA,Ci(Ci)

t because this would
require that RA,Cj (Cj) =⇒ Cti and RA,Ci(Ci)

t =⇒ Cti . Therefore RA,Cj (RA,Ci(Ci)) = RA,Ci(Ci)
and RA,Cj (RA,Ci(Ci)

t) = RA,Ci(Ci)
t. This leads to the conclusion that in if RA,Ci(Ci) =⇒ D or

RA,Ci(Ci)
t =⇒ D then

RA,C1 ◦RA,C2 ◦ . . . ◦RA,Cn(D) = RA,Ci(D) = UA,Φ(D).

This covers all the cases in the definition of UA,Φ. Since UA,Φ(D) = RA,C1 ◦RA,C2 ◦ . . . ◦RA,Cn(D)
for all D, the Lemma is proved.

Definition 107. Given that Σ is a multiconnected tree containing ordered splits A and B and
A ⇓ B in Σ, and given that Φ is a subset of Σ such that A wanders over every split in Φ, then we
define the function SA,B,Σ with range Σ̌ such that for any ordered split D ∈ Σ̌:

SA,B,Σ(D) ≡ UA,{B}∪Γ(A,B,Σ)

Definition 108. Given that Σ is a multiconnected tree and A ⇓ B in Σ, we define MA,B,Σ as

MA,B,Σ =

 ⋃
C∈B∪Γ(A,B,Σ)

R̂A,C(C)

 .

68



Lemma 109. Given that Σ is a multiconnected tree and A ⇓ B in Σ, we may write ŜA,B,Σ(Σ) as

ŜA,B,Σ(Σ) = {C ∈ Σ : ¬MA,B,Σ =⇒ C} ∪MA,B,Σ.

Proof. proof...!!!

Theorem 110. Given that Σ is a multiconnected tree and A,B ∈ Σ̌ and A ⇓ B in Σ, then ŜA,B,Σ(Σ)

is a multiconnected tree in which SA,B,Σ(A) < SA,B,Σ(B)t. Also, |W (ŜA,B,Σ(Σ)| < |W (Σ)|

Proof. We first seek to show that A directly wanders over every ordered split in Γ(A,B,Σ). Consider
an ordered split C ∈ Θ(A,B,Σ). If we assume that A does not directly wander over C, then there
is some D ∈ Σ̌ such that A < D and D ↓ C. But then D ↓ B because C ↓ B and since A < D this
contradicts A ⇓ B. Therefore, A ⇓ C for C ∈ Θ(A,B,Σ). Next consider a split C ∈ Λ(A,B,Σ). If
A does not directly wander over C, then there is some D ∈ Σ̌ such that A < D and D ↓ C. Now,
by Lemma 74, either D ↓ B or D < B. If D ↓ B then we would have A < D ↓ B, which contradicts
the premise A ⇓ B. If D < B then we would have A < D < B which also contradicts the premise.
Therefore, A ⇓ C for C ∈ Λ(A,B,Σ). Since Γ(A,B,Σ) = Λ(A,B,Σ) ∪ Θ(A,B,Σ), A must also
directly wander over every element of Γ(A,B,Σ).

For any split D ∈ Γ(A,B,Σ) we also have that Γ(A,D,Σ) ⊆ Γ(A,B,Σ). To see this, consider
some split C ∈ Σ such that A ↓ C and C ↓ D; because D ↓ B we also have C ↓ B and so
C ∈ Γ(A,B,Σ). Next consider a split C ∈ Σ such that A ↓ C and C < D; because D < B we
also have C < B and so C ∈ Γ(A,B,Σ). Since these two cases cover every C ∈ Γ(A,D,Σ) we may
conclude that Γ(A,D,Σ) ⊆ Γ(A,B,Σ).

Now, Lemma 82 implies that the relation A <o B ≡ (A ↓ B)∨ (A < B) is a strict partial order.
Therefore, the set Γ(A,B,Σ) must contain at least one minimal element D under <o. That is, there
must exist a split D ∈ Γ(A,B,Σ) such that no split C in Γ(A,B,Σ) has C ↓ D or C < D. Since
Γ(A,D,Σ) ⊂ Γ(A,B,Σ) this implies that Γ(A,D,Σ) is empty. Because Γ(A,D,Σ) is empty and
A ⇓ D the conditions of theorem 100 are met for A and D. Therefore theorem 100 indicates that
RA,D(Σ) is a multiconnected tree, and Lemma 103 shows that |W (RA,D(Σ))| < |W (Σ)|.

We now consider a sequence of split sets Σ(i) that are obtained by starting with Σ(0) = Σ
and then defining Σ(i+1) = R̂A,Di(Σ

(i)), where Di is any minimal element in Γ(A,B,Σ(i)). As
we have just shown, Σ(i+1) must be a multiconnected tree, and |W (Σ(i+1))| < |W (Σ(i))|. We
note that Di ∈ Γ(A,B,Σ(i)) will be removed from Σ(i+1) and replaced with RA,Di(Di) and that
A < RA,Di(Di). Therefore, Γ(A,B,Σ(i+1)) will decrease by at least one element compared to
Γ(A,B,Σ(i)), since Di is not an element of Γ(A,B,Σ(i+1)) and RA,Di(Di) is not either. Since
the size of Γ(A,B,Σ) is finite, repeated application of this procedure must therefore terminate in a
multiconnected tree Σ(n) for some n in which Γ(A,B,Σ(n)) is empty and all elements C ∈ Γ(A,B,Σ)
have been replaced with RA,C(C). We may then apply Theorem 100 to A and B in Σ(n), obtaining
a final multiconnected tree Σ′ = R̂A,B(Σ(n)) in which B is replaced by RA,B(B). By Lemma
106, Σ′ = ÛA,{B}∪Γ(A,B,Σ) = ŜA,B,Σ(Σ) and so ŜA,B,Σ(Σ) is a multiconnected tree. Furthermore,
|W (Σ(i))| decreases with increasing i and so |W (ŜA,B,Σ(Σ)| < |W (Σ)|.

We note that, in order to resolve A to the right of B, the function ŜA,B,Σ(·) modifes the splits
that A wanders over that are either to the left of B or above B.

Lemma 111. If any split in B ∈ Σ is partial, then there exists another split A ∈ Σ such that A ⇓ B
and there is no element C ∈ Σ̌ such that A ↓ C ↓ B.
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Proof. Let L be the complete taxon set. If B is a partial split in Σ, then L−B1−B2 is not empty
and there exists some x ∈ L −B1 −B2. Then the split D = x|L − x satisfies D ↓ B.

Now consider the set of all ordered splits C ∈ Σ̌ such that C ↓ B. We have just shown that
this set is not empty. Now, <o is a strict partial order on this set, and so there must be a maximal
element A. This means that there can be no other split C such that A < C and C ↓ B. Therefore
A ⇓ B. Furthermore, there can be no element C ∈ Σ̌ such that A ↓ C ↓ B.

Lemma 112. Given that A and B are ordered splits and A ↓ B then 〈{A,B}〉 = 〈{A,RA,B(B)}〉 ∪〈{
A,RA,Bt(B)

}〉
.

Proof. If we consider a tree τ ∈ 〈{A,B}〉, then at least one branch of τ induces a full split α
that implies A, and at least one branch induces a full split β that implies B. These two branches
of τ must be distinct because any branch that implied both sub-partitions would either imply
A1 + B1|A2 + B2 or A1 + B2|A2 + B1. However, the left and right sides of these splits are not
disjoint, since B1 ∪B2 ⊂ A1. So, a single branch of the tree cannot induce a split that implies both
A and B.

Because α and β are distinct full splits, they must have one of the four relationships based on
“>”. The possibility αt < β is ruled out because it implies that A2 ∩B2 = ∅, which contradicts the
premise A ↓ B. Likewise, β < α is ruled out because it implies B1 ∩A2 = ∅, which also contradicts
the premise A ↓ B. This leaves the two cases α < β and α < βt, that correspond to the branch
implying α being on alternate sides of the branch implying β. Therefore, every tree τ ∈ 〈{A,B}〉
must have branches with splits α and β that imply A and B respectively, and for which α < β or
α < βt.

If α < β then α1 ⊂ β1. Since A1 ⊆ α1, this means that A1 ⊆ β1. Therefore β =⇒ A1+B1|B2 =
RA,Bt(B).

If α < βt then A1 ⊆ α1 ⊂ β2. Therefore β =⇒ B1|B2 +A1 = RA,B(B).
Therefore, every τ ∈ 〈{A,B}〉must also exhibit the splitRA,B(B) orRA,Bt(B) and so 〈{A,B}〉 =

〈{A,RA,B(B)}〉 ∪
〈{
A,RA,Bt(B)

}〉
.

Lemma 113. Given that A ↓ B and C < B then 〈RA,B(B)〉 ∩ 〈C〉 = 〈RA,B(B)〉 ∩ 〈RA,C(C)〉.

Proof. Any tree τ ∈ 〈RA,B(B)〉 ∩ 〈C〉 must have a branch inducing a full split β that implies
B1|A1 +B2 and a branch inducing a full split γ that implies C. Since β and γ are compatible full
splits, and since C1 ∩ B1 and C2 ∩ B2 are not empty, the possibilities for how β and γ may relate
are γ < β and β < γ. It is also possible that β = γ if one branch induces both splits. We consider
each case in turn.

If γ < β then A1+B2 ⊆ B2 ⊂ γ2. Since C1 ⊆ γ1 and C2 ⊆ γ2 this means that γ =⇒ C1|C2∪A1.
If γ = β then A1 +B1 ⊆ β2 ⊆ γ2. Therefore γ2 =⇒ C1|C2 +A1 as in the previous case.
If β < γ then C2 ⊆ β2. Also C1 ⊂ B1 ⊆ β1 because C < B, and A1 ⊂ β2. So β =⇒ C1|C2∪A1.
Therefore, in every case, at least one of β or γ implies RA,C(C), and so we must have τ ∈

〈RA,C(C)〉. This means that

〈RA,B(B)〉 ∩ 〈C〉 = 〈RA,B(B)〉 ∩ 〈C〉 ∩ 〈RA,C(C)〉
= 〈RA,B(B)〉 ∩ 〈RA,C(C)〉 .

The last step follows from the fact that 〈C〉 ∩ 〈RA,C(C)〉 = 〈RA,C(C)〉.

Theorem 114. Given that Σ is a multiconnected tree and A ⇓ B in Σ and Θ(A,B,Σ) is empty,
then 〈Σ〉 ∩

〈
R̂A,B(B)

〉
=
〈
ŜA,B,Σ(Σ)

〉
.

70



Proof. We note that if C ∈ Λ(A,B,Σ) then 〈C〉 ∩
〈
R̂A,B(B)

〉
=
〈
R̂A,C(C)

〉
∩
〈
R̂A,B(B)

〉
by

Lemma 113. This allows us to write

〈Σ〉 ∩
〈
R̂A,B(B)

〉
= 〈Σ〉 ∩

 ⋂
C∈Λ(A,B,Σ)

〈C〉

 ∩ 〈R̂A,B(B)
〉

= 〈Σ〉 ∩

 ⋂
C∈Λ(A,B,Σ)

〈C〉 ∩
〈
R̂A,B(B)

〉
= 〈Σ〉 ∩

 ⋂
C∈Λ(A,B,Σ)

〈
R̂A,C(C)

〉
∩
〈
R̂A,B(B)

〉
= 〈Σ〉 ∩

 ⋂
C∈Λ(A,B,Σ)

〈
R̂A,C(C)

〉 ∩ 〈R̂A,B(B)
〉

= 〈Σ〉 ∩ 〈MA,B,Σ〉

Now, let us write MA,B,Σ =⇒ C to mean that some member of MA,B,Σ implies C. Then
MA,B,Σ =⇒ C allows us to conclude that 〈C〉 ∩ 〈MA,B,Σ〉 = 〈MA,B,Σ〉. Therefore

〈Σ〉 ∩
〈
R̂A,B(B)

〉
= 〈Σ〉 ∩ 〈MA,B,Σ〉

=

 ⋂
C∈Σ:¬MA,B,Σ =⇒ C

〈C〉

 ∩
 ⋂
C∈Σ:MA,B,Σ =⇒ C

〈C〉

 ∩ 〈MA,B,Σ〉

=

 ⋂
C∈Σ:¬MA,B,Σ =⇒ C

〈C〉

 ∩ 〈MA,B,Σ〉 .

But ŜA,B,Σ(Σ) = {C ∈ Σ : ¬MA,B,Σ =⇒ C}∪MA,B,Σ. Therefore, 〈Σ〉∩〈RA,B(B)〉 =
〈
ŜA,B,Σ(Σ)

〉
.

Theorem 115. Given that Σ is a multiconnected tree and A ⇓ B in Σ and Θ(A,B,Σ) is empty,
then 〈Σ〉 =

〈
ŜA,B,Σ(Σ)

〉
∪
〈
ŜA,Bt,Σ(Σ)

〉
.

Proof. We first note that by Lemma 112, 〈A〉 ∩ 〈B〉 = 〈A〉 ∩
(
〈RA,B(B)〉 ∪

〈
RA,Bt(B)

〉)
. We then

express Σ as follows, and apply this fact:

〈Σ〉 = 〈Σ〉 ∩ (〈A〉 ∩ 〈B〉)

= 〈Σ〉 ∩ 〈A〉 ∩
(〈
R̂A,B(B)

〉
∪
〈
R̂A,Bt(B)

〉)
= 〈Σ〉 ∩

(〈
R̂A,B(B)

〉
∪
〈
R̂A,Bt(B)

〉)
= 〈Σ〉 ∩

(〈
R̂A,B(B)

〉
∪
〈
R̂A,Bt(Bt)

〉)
=

[
〈Σ〉 ∩

〈
R̂A,B(B)

〉]
∪
[
〈Σ〉 ∩

〈
R̂A,Bt(Bt)

〉]
.

Now, by theorem 114 this implies that 〈Σ〉 =
〈
ŜA,B,Σ(Σ)

〉
∪
〈
ŜA,Bt,Σ(Σ)

〉
and we are done.
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Lemma 116. Given that Σ is a multiconnected tree and A ⇓ B in Σ and Θ(A,B,Σ) is empty then
quartets q(ŜA,B(Σ)) ∩ q(Σ)C are all of the form c1c1|a1c2 for some C ∈ Λ(A,B,Σ) ∪ {B}.

Now, the quartets in ŜA,B,Σ(Σ) that are not in Σ may be written as follows, since Γ(A,B,Σ) =
Λ(A,B,Σ):

q(ŜA,B(Σ)) ∩ q(Σ)C = q ({C ∈ Σ : ¬MA,B,Σ =⇒ C} ∪MA,B,Σ) ∩ q(Σ)C

=
[
q ({C ∈ Σ : ¬MA,B,Σ =⇒ C}) ∩ q(Σ)C

]
∩
[
q (MA,B,Σ) ∩ q(Σ)C

]
= q (MA,B,Σ) ∩ q(Σ)C

= q

 ⋃
C∈Γ(A,B,Σ)∪{B}

R̂A,C(C)

 ∩ q(Σ)C

=
⋃

C∈Λ(A,B,Σ)∪{B}

q(R̂A,C(C)) ∩ q(Σ)C

Now R̂A,C,(C) = C1|C2 +A1 so the quartets q(R̂A,C(C)) will be of the form c1c1|c2c2 or c1c1|a1c2 or
c1c1|a1a1. However, A already implies quartets of the form c1c1|a1a1 since A ↓ C. Also, C implies
quartets of the form c1c1|c2c2. Thus the intersection with q(Σ)C will remove quartets of the first
and third forms, leaving only quartets of the form c1c1|a1c2.

Lemma 117. Given that Σ is a multiconnected tree and A ⇓ B in Σ and Θ(A,B,Σ) is empty then
quartets q(ŜA,B(Σ)) ∩ q(Σ)C and the quartets q(ŜA,Bt(Σ)) ∩ q(Σ)C do not intersect.

Proof. Quartets q(ŜA,B(Σ)) ∩ q(Σ)C are of the form c1c1|a1c2 where C ∈ Λ(A,B,Σ) ∪ {B} by
Lemma 116. Now, each such C has either C1 = B1 or C1 ⊂ B1, so the quartets are of the form
b1b1|a1c2. Note that c2 cannot be in A1 since C2 and A1 are disjoint.

Quartets q(ŜA,Bt(Σ)) ∩ q(Σ)C are of the form c1c1|a1c2 where C ∈ Λ(A,Bt,Σ) ∪ {Bt}, and for
each such C, we have C1 ⊂ B2. Therefore these quartets are of the form b2b2|a1c2. Note that c2

cannot be in A1 since C2 and A1 are disjoint.
However, B1 and B2 are non-overlapping, and A1 is disjoint from both B and from all the other

splits C. Therefore no quartet of the form b1b1|a1c2 that divides a single element of A1 from two
elements of B1 can also divide a single element of A1 from two elements of B2. Therefore the two
sets of quartets are disjoint.

Closure We seek to show that if Σ is a set of partial splits that satisfies the criteria for being a
multiconnected then the set of quartets q(Σ) implied by all the individual splits is exactly the same
as the set of quartets q 〈Σ〉 common to all trees that are compatible with Σ. That is, Σ does not
jointly imply any quartets that are not implied by individual splits σ ∈ Σ. We reduce closure of
multiconnected trees to closure of (possibly multifurcating) trees.

Compatibility We also reduce compatibility of multiconnected trees to compatibility of (possibly
multifurcating) trees.

Theorem 118. If a set of splits Σ is a multiconnected tree then 〈Σ〉 is not empty (Σ is compatible)
and for any x 6∈ q(Σ) then x 6∈ q(〈Σ〉).

Proof. We define a sequence of split sets Σ(i) starting with Σ(0) = Σ. Now, if Σ(i) is a multiconnected
tree with |W (Σ(i))| > 0 then by Lemma 111 we can find a pair of splits Ai, Bi ∈ Σ(i) such that
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Ai ⇓ Bi in Σ(i). If x 6∈ q(Σ(i)) then by Lemma 117 one or both of SAi,Bi,Σ(i)(Σ
(i)) and SAi,Bt

i ,Σ(i)(Σ
(i))

does not imply x. We therefore set Σ(i+1) = SAi,Bi,Σ(i)(Σ(i)) unless x ∈ q
(
SAi,Bi,Σ(i)(Σ

(i))
)
, in which

case we set Σ(i+1) = SAi,Bt
i ,Σ

(i)(Σ(i)). By theorem 110 each Σ(i+1) is a multiconnected tree if Σ(i) is
one; furthermore |W (Σ(i+1))| must be smaller than |W (Σ(i))| by theorem 110.

〈
Σ(i+1)

〉
⊆
〈
Σ(i)

〉
by

theorem 115. Since |W (·)| may be at most zero, and since it decreases at each step where it is greater
than zero, the sequence

∣∣W (Σ(i))
∣∣ must eventually terminate at some i = n where

∣∣W (Σ(n))
∣∣ = 0

and x 6∈ q(Σ(n)). Since each entry in this Σ(n) is a full split and all the full splits are pairwise
compatible because Σ(n) is a multiconnected tree, Σ(n) must be jointly compatible, so that

〈
Σ(n)

〉
is not empty. Since

〈
Σ(n)

〉
⊆ 〈Σ〉 this means that Σ is also compatible. Furthermore,

〈
Σ(n)

〉
⊆ 〈Σ〉

implies that q (〈Σ〉) ⊆ q
(〈

Σ(n)
〉)
. By theorem ?? q

(〈
Σ(n)

〉)
= q(Σ(n)) and so q (〈Σ〉) ⊆ q(Σ(n)).

Since x 6∈ q(Σ(n)) then x 6∈ q (〈Σ〉).

A.4

B

C

D

E Examples/Corner Cases

E.1 X is separated from a -X branch

12X|345
123|45

E.2 Two branches wander over each over

X=12|34
Y = 12|45

E.3 A branch wanders directly that did not before, because an intermediate
branch goes away.

A=12|34
B=1234|X56
C=1234Y|56
B < C ↓ A and so B ↓ A.
X ↓ C
Y ↓ C ↓ A
We resolve X ↓ C to X < C ′t where
C ′ = 1234Y |X56
This makes B go away.
Now C ′ wanders directly over A whereas previously we had B < C ↓ A.
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E.4 Illegal

Here, if 1 really wanders over B, then it can attach on the 56 side of B, when B is on the 34 size of
A. This violates the split A.

A=12|34
B=234|56

E.4.1 Illegal

Here, if 2 really wanders over B, then 2 can attach on the 56 side of B when B is on the 34 side of
A, thus violating the split A.

A=12|34
B=13|56

E.4.2 Illegal #(A,B)=2

A=12 | 45
B=23|56
If A < B then we have 12|456 < 123|56
If B < A then we have 23|456 < 123|45

Thought: “The problem that we have with these two splits is that they are really the same
branch .”

E.4.3 Illegal #(A,B)=2 / 2-closure.

A=12X | 45Y
B=2X3|5Y6
If A < B then we have 12X|45Y6 < 12X3|5Y6
If B < A then we have 2X3|45Y6 < 12X3|45Y

Thought: “The problem that we have with these two splits is that they are really the same
branch .”

Also, we get 2X|45Y6 and 12X3|5Y. In short, we get either A1 ∪ B1|A2 < B1|A2 ∪ B2 or
A1 ∪B1|B2 < A1|A2 ∪B2, and therefore we always get A1 ∪B1|A2 ∩B2 and A1 ∩B1|A2 ∪B2.

E.4.4 Illegal: 6 branches too similar to each other

23|456
12|456
13|456
123|56
123|46
123|45
All of these splits are almost identical to the full split 123|456 except for the lack of a single leaf

taxon.
We must pick an order for
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F Splitting out part of the paper?

Can I split out part of the paper that (a) identifies partial splits as what we should be concerned
about and (b) proposes marked branches as ways of displaying them, as well as (c) multiconnected
trees and cloud diagrams? I can show (d) that not all split sets can be represented as either (b) or
(c).

This would involve defining how a multiconnected graph implies a split: an edge (u, v) implies
a split A if x ∈ A1 is connected to u but not v in every embedded graph minus (u, v), the same is
true for y ∈ A2, and every other z ∈ L− A1 − A2 is connected to u in some embedded graphs and
v in others.

I could then use illustrative examples to illustrate the importance of partial splits without
necessarily proposing a general alternative. This would mean that, when such an alternative exists,
we would be able to draw it because we would know what it means.

F.1 Can I use a search method instead of a proof?

Can I search for multiconnected trees? I could do this by (theoretically) generating every embedded
tree and checking the result...

F.2 The algorithm for finding the partial splits

I could (optionally) decide to include the algorithm to find the partial splits, and the graph of
supported partial splits versus supported full splits.
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